解 |X-1|+|X-3|大于4
|PA|+|PB|大于4
由于|AB|=2 可知点P在点C的左侧,点P在点D的右侧
X小于0 或者 X大于4
什么叫由于AB=2,就得出可知某某某的结论,我没弄懂 大家帮帮我呀
好好回答,认真回答,不要辜负我那么辛苦才画出的图~~
解 |X-1|+|X-3|大于4
|PA|+|PB|大于4
由于|AB|=2 可知点P在点C的左侧,点P在点D的右侧
X小于0 或者 X大于4
什么叫由于AB=2,就得出可知某某某的结论,我没弄懂 大家帮帮我呀
好好回答,认真回答,不要辜负我那么辛苦才画出的图~~
这个题目本意是点p在坐标的值为X
ABCD为坐标轴上四点,其X值分别为X=1,X=3,X=0,X=4
从图上可知|AB|=2,|AC|=1,|CB|=3,|AD|=3,|BD|=1
排除法:
当点P在AB点之间,|PA|+|PB|=|AB|=2,不能满足|PA|+|PB|大于4,P不在AB之间
当点P在点C左侧,|PA|+|PB|>|AC|+|CB|=4,满足|PA|+|PB|大于4
当点P在AC点之间,|PA|+|PB|<=|AC|+|CB|=4,不能满足|PA|+|PB|大于4,P不在AC之间
当点P在BD点之间,|PA|+|PB|<=|AD|+|BD|=4,不能满足|PA|+|PB|大于4,P不在BD之间
当点P在点C左侧,|PA|+|PB|>|AC|+|CB|=4,满足|PA|+|PB|大于4
当点P在点D右侧,|PA|+|PB|>|AD|+|BD|=4,满足|PA|+|PB|大于4
|X-1|+|X-3|大于4的解集为X小于0 或者 X大于4
这个是坐标法解题。
跟这样的解法思路是一样的:
当X>3时,
|X-1|+|X-3|=X-1+X-3>4,解得X>4
当1<=X<=3
|X-1|+|X-3|=X-1+3-X=2,不可能|X-1|+|X-3|>4,故当1<=X<=3不是不等式的解集
当X<1时
|X-1|+|X-3|=X-1+3-X=21-X+3-X>4,解得X<0
所以|X-1|+|X-3|>4的解集为X<0或X>4
AB=2
就是说它们之间的距离等于2
就是看那个距离啊,CA+CB=4,同样,AD+BD=4,又∵|PA|+|PB|>4
∴点P在 C,D两点之外