如图,在?ABCD中,E为CD上一点,DE:CE=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=________.
答案:2 悬赏:40 手机版
解决时间 2021-04-12 19:06
- 提问者网友:我是女神我骄傲
- 2021-04-11 19:20
如图,在?ABCD中,E为CD上一点,DE:CE=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=________.
最佳答案
- 五星知识达人网友:不甚了了
- 2021-04-11 20:14
4:10:25解析分析:由平行四边形的性质得AB=CD=DE+CE,则DE:AB=2:5,由CD∥AB得△DEF∽△ABF,根据面积比等于相似比的平方求S△DEF:S△ABF,△DEF与△BEF等高,其面积比为DF:FB,由此可求三个三角形的面积比.解答:∵在?ABCD中,AB=CD=DE+CE,DE:CE=2:3,
∴DE:AB=2:5,
又∵CD∥AB,
∴△DEF∽△ABF,
∴S△DEF:S△ABF=DE2:AB2=4:25,
∵△EBF与△ABF等高,
∴S△EBF:S△ABF=EF:AF=2:5=10:25,
∴S△DEF:S△EBF:S△ABF=4:10:25.
故
∴DE:AB=2:5,
又∵CD∥AB,
∴△DEF∽△ABF,
∴S△DEF:S△ABF=DE2:AB2=4:25,
∵△EBF与△ABF等高,
∴S△EBF:S△ABF=EF:AF=2:5=10:25,
∴S△DEF:S△EBF:S△ABF=4:10:25.
故
全部回答
- 1楼网友:神鬼未生
- 2021-04-11 21:26
我好好复习下
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯