在非等腰的锐角三角形ABC中。。
答案:2 悬赏:70 手机版
解决时间 2021-04-13 06:28
- 提问者网友:遮云壑
- 2021-04-12 22:57
在非等腰的锐角三角形ABC中。。
最佳答案
- 五星知识达人网友:野慌
- 2021-04-12 23:17
1.在非等腰的锐角三角形ABC中,三个内角均为锐角,A=π/3,则B∈(0, π/2),C∈(0,2π/3-B)
设f(x)=2sin2x+sin(2x+π/6)=2sin2x+sin2xcosπ/6+cos2xsinπ/6
=3[(4+√3)/6sin2x+1/6cos2x]=3sin(2x+α)
∴sin2x+sin(2x+π/6) ∈[-3,3]
又B∈(0, π/2),f(π/2)=-1/2
∴sin2B+sin(2B+π/6) ∈[-1/2,3]
2.数列{an}满足:a1=1/2,an=a(n-1)+1/(n^2-1)(n≥2)
a1=1/2,a2=a1+1/3,a3=a2+1/8= a1+1/3+1/8,…a10=a9+1/99
a10= a1+1/3+1/8+1/15+…+1/99
= 1/2+1/3+1/8+1/15+1/24+1/35+1/48+1/63+1/80+1/99
设f(x)=2sin2x+sin(2x+π/6)=2sin2x+sin2xcosπ/6+cos2xsinπ/6
=3[(4+√3)/6sin2x+1/6cos2x]=3sin(2x+α)
∴sin2x+sin(2x+π/6) ∈[-3,3]
又B∈(0, π/2),f(π/2)=-1/2
∴sin2B+sin(2B+π/6) ∈[-1/2,3]
2.数列{an}满足:a1=1/2,an=a(n-1)+1/(n^2-1)(n≥2)
a1=1/2,a2=a1+1/3,a3=a2+1/8= a1+1/3+1/8,…a10=a9+1/99
a10= a1+1/3+1/8+1/15+…+1/99
= 1/2+1/3+1/8+1/15+1/24+1/35+1/48+1/63+1/80+1/99
全部回答
- 1楼网友:人间朝暮
- 2021-04-13 00:14
解析:∵∠B+∠C=2π/3∴∠C=2π/3-∠B
即0<2π/3-∠B<π/2,且0<∠B<π/2
得,π/6<∠B<π/2,
∴π/3<2∠B<π,π/2<2∠B+π/6<7π/6,
∴0<sin2B<1,-1/2<sin(2∠B+π/6)<1,
则-1/2<2sin2B+sin(2B+π/6)<3,
即0<2π/3-∠B<π/2,且0<∠B<π/2
得,π/6<∠B<π/2,
∴π/3<2∠B<π,π/2<2∠B+π/6<7π/6,
∴0<sin2B<1,-1/2<sin(2∠B+π/6)<1,
则-1/2<2sin2B+sin(2B+π/6)<3,
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯