趋势分析和回归分析,线性、对数、多项式、盛幂、指数、移动平均分析有何不同?
答案:1 悬赏:60 手机版
解决时间 2021-02-04 03:17
- 提问者网友:自食苦果
- 2021-02-03 23:32
趋势分析和回归分析,线性、对数、多项式、盛幂、指数、移动平均分析有何不同?
最佳答案
- 五星知识达人网友:琴狂剑也妄
- 2021-02-04 00:51
1 趋势分析法
趋势分析法称之趋势曲线分析、曲线拟合或曲线回归,它是迄今为止研究最多,也最为流行的定量预测方法。它是根据已知的历史资料来拟合一条曲线,使得这条曲线能反映负荷本身的增长趋势,然后按照这个增长趋势曲线,对要求的未来某一点估计出该时刻的负荷预测值。常用的趋势模型有线性趋势模型、多项式趋势模型、线性趋势模型、对数趋势模型、幂函数趋势模型、指数趋势模型、逻辑斯蒂(logistic)模型、龚伯茨(gompertz)模型等,寻求趋势模型的过程是比较简单的,这种方法本身是一种确定的外推,在处理历史资料、拟合曲线,得到模拟曲线的过程,都不考虑随机误差。采用趋势分析拟合的曲线,其精确度原则上是对拟合的全区间都一致的。在很多情况下,选择合适的趋势曲线,确实也能给出较好的预测结果。但不同的模型给出的结果相差会很大,使用的关键是根据地区发展情况,选择适当的模型。分析珠海市1995年以来的用电量历史数据,发现具有比较明显的二项式增长趋势,模型曲线为y=0.229565x2-914.8523x+911472.65,利用该模型曲线得到2005年到2010年的用电量水平分别为52.78亿kwh和85.08亿kwh。拟合曲线如图1所示。
2 回归分析法
回归分析法(又称统计分析法),也是目前广泛应用的定量预测方法。其任务是确定预测值和影响因子之间的关系。电力负荷回归分析法是通过对影响因子值(比如国民生产总值、工农业总产值、人口、气候等)和用电的历史资料进行统计分析,确定用电量和影响因子之间的函数关系,从而实现预测。但由于回归分析中,选用何种因子和该因子系用何种表达式有时只是一种推测,而且影响用电因子的多样性和某些因子的不可测性,使得回归分析在某些情况下受到限制。
对珠海市历年用电量和国内生产总值gdp、人口popu等数据进行分析,求得回归方程为:y=-3.9848+0.0727gdp+0.10307popu,用该模型预测2005年和2010年的用电量水平分别为47.11亿kwh和70.98亿kwh。
回归分析预测方法是要通过对历史数据的分析研究,探索经济、社会各有关因素与电力负荷的内在联系和发展变化规律,并根据对规划期内本地区经济、社会发展情况的预测来推算未来的负荷。可见该方法不仅依赖于模型的准确性,更依赖于影响因子其本身预测值的准确度。
3 指数平滑法
趋势分析和回归分析都是根据时间序列的实际值建立模型,再利用模型来进行预测计算的。指数平滑法是用以往的历史数据的指数加权组合,来直接预报时间序列的将来值。
图1 拟合曲线图
其中衰减因子0<α<1,体现"重近轻远",即近期数据对预测影响大,远期数据影响小的基本原则。α越大时,由近期到远期数据的加权系数由大变小就越快,是强调新近数据的作用。例如当α=0.9时,各加权系数分别为0.9,0.09,0.009等。在极端情形下,α=1,则以往数据对预报没有任何影响。
对于电力系统负荷预测,重要的是曲线越接近目前时刻,就应当越准确,而对于过去很久的数据,不必要作很精确的拟合。类似惯性作用。
从对珠海市的实例计算可以看出,预测效果比较好。实例计算表明该方法能较好地模拟珠海市的实际并进行预测。但其不宜用于过长时期的预测。
4 单耗法
单耗法是根据第一、二、三产业每单位用电量创造的经济价值,从预测经济指标推算用电需求量,加上居民生活用电量,构成全社会用电量。预测时,通过对过去的单位产值耗电量进行统计分析,并结合产业结构调整,找出一定的规律,预测规划期的一、二、三产业的综合单耗,然后按国民经济和社会发展规划的指标,按单耗进行预测。
单耗法需要做大量细致的统计、分析工作,近期预测效果较佳。但在市场经济条件下,未来的产业单耗和经济发展指标都具有不确定性,对于中远期预测的准确性难以确定。
5 灰色模型法
灰色系统理论是反模糊控制的观点和方法延伸到复杂的大系统中,将自动控制与运筹学的数学方法相结合,研究广泛存在于客观世界中具有灰色性的问题。有部分信息已知和未知的系统称为灰色系统。
利用一阶灰色模型对珠海市全社会用电量进行了预测分析。2005年全社会用电量预测其结果应该是令人满意的。通过对原始数据的不同处理方法形成6种方案,预测2005年全社会用电量为50亿kwh左右,与其它常用方法预测的结果相当接近。这6种方案中除方案3检验为不合格外,其余全为优。但使用长数据列得到的结果与其它相比,并不占优,数据列过长,系统受干扰的成分多,不稳定因素大,反而易使模型精度降低,降低预测结果的可信度。
6 负荷密度法
负荷密度一般以kw/km2表示。不同地区、不同功能的区域,负荷密度是不同的。利用负荷密度法,一般要将预测区域分成若干功能区,如商业区、工业区、居住区、文教区等,然后根据区域的经济发展规划、人口规划、居民收入水平增长情况等,参照本地区或国内外类似地区的用电水平,选择一个合适的负荷密度指标,推算功能区和整个预测区的用电负荷。计算公式是a=sd,其中s是土地面积,d是用电密度。该方法主要适用于土地规划比较明确的城市区域,我们在做珠海市城区配电网络规划预测负荷时用了该方法。
7 弹性系数法
电力弹性系数是反映电力消费的年平均增长率和国民经济的年平均增长率之间的关系的宏观指标。电力弹性系数可以用下面的公式来表示:
e=ky/kx
式中 e-为电力弹性系数
ky-为电力消费年平均增长率
kx-为国民经济年平均增长率
在市场经济条件下,电力弹性系数已经变得捉摸不定,并且随着科学技术的迅猛发展,节电技术和电力需求侧管理,电力与经济的关系急剧变化,电力需求与经济发展的变化步伐严重失调,使得弹性系数难以捉摸,使用弹性系数法预测电力需求难以得到满意的效果,应逐步淡化。
8 分析与比较
(1)从适用条件看,回归分析和趋势分析致力于统计规律的研究与描述,适用于大样本,且过去、现在和未来发展模式一致的预测;指数平滑法是利用惯性原理对增长趋势外推,实现"重近轻远"的预测原则;产值单耗法一般根据历史统计数据,在分析影响产值单耗的诸因素的变化趋势基础上确定单耗指标,然后依据国民经济和社会发展规划指标预测电力需求;灰色模型法是通过对原始数据的整理来寻求规律,它适用于贫信息条件下的分析和预测。
(2)从采用的数据形式看,灰色系统理论是采用生成数序列建模。回归分析法、趋势分析法均是采用原始数据建模。而指数平滑法是通过对原始数据进行指数加权组合直接预测未来值。
(3)从计算复杂程度看,相对简单的是回归分析法和趋势分析法。
(4)从适用的时间分类看,单耗法、指数平滑法、灰色模型法较适宜近期预测。对中、长期预测,回归法、趋势分析法、改进型灰色模型较为合适。
趋势分析法称之趋势曲线分析、曲线拟合或曲线回归,它是迄今为止研究最多,也最为流行的定量预测方法。它是根据已知的历史资料来拟合一条曲线,使得这条曲线能反映负荷本身的增长趋势,然后按照这个增长趋势曲线,对要求的未来某一点估计出该时刻的负荷预测值。常用的趋势模型有线性趋势模型、多项式趋势模型、线性趋势模型、对数趋势模型、幂函数趋势模型、指数趋势模型、逻辑斯蒂(logistic)模型、龚伯茨(gompertz)模型等,寻求趋势模型的过程是比较简单的,这种方法本身是一种确定的外推,在处理历史资料、拟合曲线,得到模拟曲线的过程,都不考虑随机误差。采用趋势分析拟合的曲线,其精确度原则上是对拟合的全区间都一致的。在很多情况下,选择合适的趋势曲线,确实也能给出较好的预测结果。但不同的模型给出的结果相差会很大,使用的关键是根据地区发展情况,选择适当的模型。分析珠海市1995年以来的用电量历史数据,发现具有比较明显的二项式增长趋势,模型曲线为y=0.229565x2-914.8523x+911472.65,利用该模型曲线得到2005年到2010年的用电量水平分别为52.78亿kwh和85.08亿kwh。拟合曲线如图1所示。
2 回归分析法
回归分析法(又称统计分析法),也是目前广泛应用的定量预测方法。其任务是确定预测值和影响因子之间的关系。电力负荷回归分析法是通过对影响因子值(比如国民生产总值、工农业总产值、人口、气候等)和用电的历史资料进行统计分析,确定用电量和影响因子之间的函数关系,从而实现预测。但由于回归分析中,选用何种因子和该因子系用何种表达式有时只是一种推测,而且影响用电因子的多样性和某些因子的不可测性,使得回归分析在某些情况下受到限制。
对珠海市历年用电量和国内生产总值gdp、人口popu等数据进行分析,求得回归方程为:y=-3.9848+0.0727gdp+0.10307popu,用该模型预测2005年和2010年的用电量水平分别为47.11亿kwh和70.98亿kwh。
回归分析预测方法是要通过对历史数据的分析研究,探索经济、社会各有关因素与电力负荷的内在联系和发展变化规律,并根据对规划期内本地区经济、社会发展情况的预测来推算未来的负荷。可见该方法不仅依赖于模型的准确性,更依赖于影响因子其本身预测值的准确度。
3 指数平滑法
趋势分析和回归分析都是根据时间序列的实际值建立模型,再利用模型来进行预测计算的。指数平滑法是用以往的历史数据的指数加权组合,来直接预报时间序列的将来值。
图1 拟合曲线图
其中衰减因子0<α<1,体现"重近轻远",即近期数据对预测影响大,远期数据影响小的基本原则。α越大时,由近期到远期数据的加权系数由大变小就越快,是强调新近数据的作用。例如当α=0.9时,各加权系数分别为0.9,0.09,0.009等。在极端情形下,α=1,则以往数据对预报没有任何影响。
对于电力系统负荷预测,重要的是曲线越接近目前时刻,就应当越准确,而对于过去很久的数据,不必要作很精确的拟合。类似惯性作用。
从对珠海市的实例计算可以看出,预测效果比较好。实例计算表明该方法能较好地模拟珠海市的实际并进行预测。但其不宜用于过长时期的预测。
4 单耗法
单耗法是根据第一、二、三产业每单位用电量创造的经济价值,从预测经济指标推算用电需求量,加上居民生活用电量,构成全社会用电量。预测时,通过对过去的单位产值耗电量进行统计分析,并结合产业结构调整,找出一定的规律,预测规划期的一、二、三产业的综合单耗,然后按国民经济和社会发展规划的指标,按单耗进行预测。
单耗法需要做大量细致的统计、分析工作,近期预测效果较佳。但在市场经济条件下,未来的产业单耗和经济发展指标都具有不确定性,对于中远期预测的准确性难以确定。
5 灰色模型法
灰色系统理论是反模糊控制的观点和方法延伸到复杂的大系统中,将自动控制与运筹学的数学方法相结合,研究广泛存在于客观世界中具有灰色性的问题。有部分信息已知和未知的系统称为灰色系统。
利用一阶灰色模型对珠海市全社会用电量进行了预测分析。2005年全社会用电量预测其结果应该是令人满意的。通过对原始数据的不同处理方法形成6种方案,预测2005年全社会用电量为50亿kwh左右,与其它常用方法预测的结果相当接近。这6种方案中除方案3检验为不合格外,其余全为优。但使用长数据列得到的结果与其它相比,并不占优,数据列过长,系统受干扰的成分多,不稳定因素大,反而易使模型精度降低,降低预测结果的可信度。
6 负荷密度法
负荷密度一般以kw/km2表示。不同地区、不同功能的区域,负荷密度是不同的。利用负荷密度法,一般要将预测区域分成若干功能区,如商业区、工业区、居住区、文教区等,然后根据区域的经济发展规划、人口规划、居民收入水平增长情况等,参照本地区或国内外类似地区的用电水平,选择一个合适的负荷密度指标,推算功能区和整个预测区的用电负荷。计算公式是a=sd,其中s是土地面积,d是用电密度。该方法主要适用于土地规划比较明确的城市区域,我们在做珠海市城区配电网络规划预测负荷时用了该方法。
7 弹性系数法
电力弹性系数是反映电力消费的年平均增长率和国民经济的年平均增长率之间的关系的宏观指标。电力弹性系数可以用下面的公式来表示:
e=ky/kx
式中 e-为电力弹性系数
ky-为电力消费年平均增长率
kx-为国民经济年平均增长率
在市场经济条件下,电力弹性系数已经变得捉摸不定,并且随着科学技术的迅猛发展,节电技术和电力需求侧管理,电力与经济的关系急剧变化,电力需求与经济发展的变化步伐严重失调,使得弹性系数难以捉摸,使用弹性系数法预测电力需求难以得到满意的效果,应逐步淡化。
8 分析与比较
(1)从适用条件看,回归分析和趋势分析致力于统计规律的研究与描述,适用于大样本,且过去、现在和未来发展模式一致的预测;指数平滑法是利用惯性原理对增长趋势外推,实现"重近轻远"的预测原则;产值单耗法一般根据历史统计数据,在分析影响产值单耗的诸因素的变化趋势基础上确定单耗指标,然后依据国民经济和社会发展规划指标预测电力需求;灰色模型法是通过对原始数据的整理来寻求规律,它适用于贫信息条件下的分析和预测。
(2)从采用的数据形式看,灰色系统理论是采用生成数序列建模。回归分析法、趋势分析法均是采用原始数据建模。而指数平滑法是通过对原始数据进行指数加权组合直接预测未来值。
(3)从计算复杂程度看,相对简单的是回归分析法和趋势分析法。
(4)从适用的时间分类看,单耗法、指数平滑法、灰色模型法较适宜近期预测。对中、长期预测,回归法、趋势分析法、改进型灰色模型较为合适。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯