已知a>0,函数f(x)=-2asin(2x+π6)+2a+b,当x∈[0,π2]时,-5≤f(x)≤1.(1)求常数a,b的值;
答案:2 悬赏:40 手机版
解决时间 2021-02-26 15:05
- 提问者网友:练爱
- 2021-02-25 15:33
已知a>0,函数f(x)=-2asin(2x+π6)+2a+b,当x∈[0,π2]时,-5≤f(x)≤1.(1)求常数a,b的值;(2)设g(x)=f(x+π2)且lg[g(x)]>0,求g(x)的单调区间.
最佳答案
- 五星知识达人网友:持酒劝斜阳
- 2021-02-25 16:35
(1)∵x∈[0,
π
2 ],
∴2x+
π
6 ∈[
π
6 ,
7π
6 ],
∴sin(2x+
π
6 )∈[-
1
2 ,1],
∴-2asin(2x+
π
6 )∈[-2a,a],
∴f(x)∈[b,3a+b],又-5≤f(x)≤1.
∴
b=?5
3a+b=1 ,解得
a=2
b=?5 .
(2)f(x)=-4sin(2x+
π
6 )-1,
g(x)=f(x+
π
2 )=-4sin(2x+
7π
6 )-1
=4sin(2x+
π
6 )-1,
又由lgg(x)>0,得g(x)>1,
∴4sin(2x+
π
6 )-1>1,
∴sin(2x+
π
6 )>
1
2 ,
∴
π
6 +2kπ<2x+
π
2 ],
∴2x+
π
6 ∈[
π
6 ,
7π
6 ],
∴sin(2x+
π
6 )∈[-
1
2 ,1],
∴-2asin(2x+
π
6 )∈[-2a,a],
∴f(x)∈[b,3a+b],又-5≤f(x)≤1.
∴
b=?5
3a+b=1 ,解得
a=2
b=?5 .
(2)f(x)=-4sin(2x+
π
6 )-1,
g(x)=f(x+
π
2 )=-4sin(2x+
7π
6 )-1
=4sin(2x+
π
6 )-1,
又由lgg(x)>0,得g(x)>1,
∴4sin(2x+
π
6 )-1>1,
∴sin(2x+
π
6 )>
1
2 ,
∴
π
6 +2kπ<2x+
全部回答
- 1楼网友:往事隔山水
- 2021-02-25 17:31
(1)因为,x∈[0,π/2],
2x+π/6∈[π/6,7π/6],
sin(2x+π/6)∈[-1/2,1],
又 a>0
所以, -2a+2a+b=-5
a+2a+b=1
解得: a=2, b=-5
(2) 由(1)知,f(x)=-4sin(2x+π/6)-1
由题意 g(x)=f(x+π/2)
=-4sin(2x+π+π/6)-1
=4sin(2x+π/6)-1>1
即 sin(2x+π/6)>1/2
所以 2x+π/6∈(2kπ+π/6,2kπ+5π/6)
单调增区间满足 2x+π/6∈(2kπ+π/6,2kπ+π/2]
单调减区间满足 2x+π/6∈[2kπ+π/2,2kπ+5π/6)
解得 g(x)的单调增区间为 (kπ,kπ+π/6]
单调减区间为 [kπ+π/6,kπ+π/3]
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯