函数F(X)=(根号下X^2+1)-aX证明:当a≥1时函数F(X)在区间(0,+∞)上是单调函数
详细
是[0,+∞)不是(0,+∞)
函数F(X)=(根号下X^2+1)-aX证明:当a≥1时函数F(X)在区间(0,+∞)上是单调函数
答案:1 悬赏:70 手机版
解决时间 2021-08-22 20:54
- 提问者网友:轮囘Li巡影
- 2021-08-22 11:42
最佳答案
- 五星知识达人网友:低音帝王
- 2021-08-22 13:10
证明:设x1>x2≥0,则
f(x1)-f(x2)=√(x1^2+1)-ax1-√(x^2+1)+ax2
=(x1^2-x2^2)/[√(x1^12+1)+√(x2^2+1)]-a(x1-x2)
=(x1-x2){x1+x2-a[√(x1^2+1)+√(x2^2+1)]}/[√(x1^2+1)+√(x2^2+1)]
又x1>x2≥0,a≥1,即
x1-x2>0,x1
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯