如图所示,直角梯形ABCD中,AD平行BC,角BCD=90度,且CD=2AD,tan角ABC=2,过
答案:2 悬赏:50 手机版
解决时间 2021-03-09 13:18
- 提问者网友:疯子也有疯子的情调
- 2021-03-08 21:59
如图所示,直角梯形ABCD中,AD平行BC,角BCD=90度,且CD=2AD,tan角ABC=2,过
最佳答案
- 五星知识达人网友:鱼芗
- 2021-03-08 22:55
思路:1、延长DE交BC于F,得∠DFC=∠ABC得tan∠DFC=tan∠ABC=2即DC=2CF由已知CD=2AD,得到AD=CF由平行四边形ADFB得AD=BF,所以CF=BF即BC=2AD所以BC=CD2、由CD=CB,∠DCE=∠BCE,CE=CE得△DCG≌△BCE,所以BE=DE△DCG是△BCE绕点C旋转90°得到,所以DG=BE=DE,CG=CE点D和点C都在EG的中垂线上所以CD是EG的中垂线(两点确定一条直线)即CD垂直平分EG3、由已证△DCG≌△BCE,得∠CDE=∠CBE再有∠BCP=∠DCF,BC=DC所以△DCF≌△BCP,所以CP=CF所以CD=2CF=2CP即P是CD的中点======以下答案可供参考======供参考答案1:(1)延长DE交BC于F,得平行四边形ABFD,根据平行四边形的性质以及锐角三角函数的概念找到线段之间的关系,从而证明结论;(2)根据旋转的性质,只需说明ED=GD,CE=CG,即可证明;(3)根据已知条件,要证明P是CD的中点,只需证明PD=AD,借助全等即可证明.证明:(1)延长DE交BC于F,∵AD‖BC,AB‖DF,∴AD=BF,∠ABC=∠DFC.在Rt△DCF中,∵tan∠DFC=tan∠ABC=2,∴ CDCF=2,即CD=2CF,∵CD=2AD=2BF,∴BF=CF,∴BC=BF+CF= 12CD+ 12CD=CD.即BC=CD.(2)∵CE平分∠BCD,∴∠BCE=∠DCE,由(1)知BC=CD,∵CE=CE,∴△BCE≌△DCE,∴BE=DE,由图形旋转的性质知CE=CG,BE=DG,∴DE=DG,∴C,D都在EG的垂直平分线上,∴CD垂直平分EG.(3)连接BD,由(2)知BE=DE,∴∠1=∠2.∵AB‖DE,∴∠3=∠2.∴∠1=∠3.∵AD‖BC,∴∠4=∠DBC.由(1)知BC=CD,∴∠DBC=∠BDC,∴∠4=∠BDP.又∵BD=BD,∴△BAD≌△BPD,∴DP=AD.∵AD= 12CD,∴DP= 12CD.∴P是CD的中点. 如图所示,直角梯形ABCD中,AD平行BC,角BCD=90度,且CD=2AD,tan角ABC=2,过点D作DE平行AB,交角BCD的平分线于点E,连接BE1.求证:BC=CD2.将三角形BCE绕点C顺时针旋转90度得到三角形DCG,连接EG,求证:CD垂直平分EG3.延长BE交CD于点P,求证:P是CD的中点(图1)答案网 www.Zqnf.com 答案网 www.Zqnf.com
全部回答
- 1楼网友:末日狂欢
- 2021-03-08 23:17
这个答案应该是对的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯