如图,已知四棱锥P-ABCD的底面ABCD是菱形,PA⊥平面ABCD,点F为PC的中点.
(1)求证:PA∥平面BDF;
(2)求证:BD⊥平面PAC.
如图,已知四棱锥P-ABCD的底面ABCD是菱形,PA⊥平面ABCD,点F为PC的中点.(1)求证:PA∥平面BDF;(2)求证:BD⊥平面PAC.
答案:2 悬赏:30 手机版
解决时间 2021-04-10 12:09
- 提问者网友:几叶到寒
- 2021-04-10 07:55
最佳答案
- 五星知识达人网友:独行浪子会拥风
- 2021-04-10 08:22
解:(1)证明:连接AC,BD与AC交于点O,连接OF.∵ABCD是菱形,∴O是AC的中点.
∵点F为PC的中点,∴OF∥PA.∵OF?平面BDF,PA?平面BDF,∴PA∥平面BDF.
(2)∵PA⊥平面ABCD,∴PA⊥BD.又∵底面ABCD是菱形,∴BD⊥AC.
又PA∩AC=A,∴BD⊥平面PAC.解析分析:(1)设BD与AC交于点O,利用三角形的中位线性质可得OF∥PA,从而证明PA∥平面BDF.(2)由 PA⊥平面ABCD 得PA⊥BD,依据菱形的性质可得 BD⊥AC,从而证得 BD⊥平面PAC.点评:本题考查证明线线垂直、线面垂直的方法,直线与平面垂直的判定、性质的应用,取BD与AC交于点O,是解题的突破口.
∵点F为PC的中点,∴OF∥PA.∵OF?平面BDF,PA?平面BDF,∴PA∥平面BDF.
(2)∵PA⊥平面ABCD,∴PA⊥BD.又∵底面ABCD是菱形,∴BD⊥AC.
又PA∩AC=A,∴BD⊥平面PAC.解析分析:(1)设BD与AC交于点O,利用三角形的中位线性质可得OF∥PA,从而证明PA∥平面BDF.(2)由 PA⊥平面ABCD 得PA⊥BD,依据菱形的性质可得 BD⊥AC,从而证得 BD⊥平面PAC.点评:本题考查证明线线垂直、线面垂直的方法,直线与平面垂直的判定、性质的应用,取BD与AC交于点O,是解题的突破口.
全部回答
- 1楼网友:几近狂妄
- 2021-04-10 08:43
哦,回答的不错
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯
正方形一边上任一点到这个正方形两条对角线的 |
阴历怎么看 ? |