比较无穷大量的阶的高低
答案:1 悬赏:10 手机版
解决时间 2021-03-26 00:25
- 提问者网友:流星是天使的眼泪
- 2021-03-25 15:22
比较无穷大量的阶的高低
最佳答案
- 五星知识达人网友:雾月
- 2021-03-25 15:33
比较两个无穷大量f(n)和g(n)的阶的高低,
实际上就是求这两个无穷大量比值的极限,
若极限值为非0常数,则这两个无穷大量同阶,
若f(n) /g(n)趋于0,则f(n)比g(n)低阶,
若f(n) /g(n)趋于无穷,则f(n)比g(n)高阶
那么显然在这里
lim(n->∞) √n / √(n^3+n)
=lim(n->∞) 1 / √(n^2+1)
n趋于∞时,显然1 / √(n^2+1)趋于0,
故√(n^3+n)是比√n高阶的无穷大
而
lim(n->∞) ln(1+n^2) / √n 使用洛必达法则,对分子分母同时求导
=lim(n->∞) [2n/(1+n^2)] / (0.5 /√n)
=lim(n->∞) 4 / [n^(-1.5)+ n^0.5]
显然n趋于∞时,n^(-1.5)+ n^0.5仍趋于∞,
故极限值为0
所以√n是比 ln(1+n^2)高阶的无穷大
于是√(n^3+n)比√n高阶,√n比ln(1+n^2)高阶
如果式子是多项式的话,
那就可以直接比较指数上的系数,那么系数大的一定是更高阶的无穷大,
比如√(n^3+n)比√n高阶,n^4-n^3比n^3高阶等等
实际上就是求这两个无穷大量比值的极限,
若极限值为非0常数,则这两个无穷大量同阶,
若f(n) /g(n)趋于0,则f(n)比g(n)低阶,
若f(n) /g(n)趋于无穷,则f(n)比g(n)高阶
那么显然在这里
lim(n->∞) √n / √(n^3+n)
=lim(n->∞) 1 / √(n^2+1)
n趋于∞时,显然1 / √(n^2+1)趋于0,
故√(n^3+n)是比√n高阶的无穷大
而
lim(n->∞) ln(1+n^2) / √n 使用洛必达法则,对分子分母同时求导
=lim(n->∞) [2n/(1+n^2)] / (0.5 /√n)
=lim(n->∞) 4 / [n^(-1.5)+ n^0.5]
显然n趋于∞时,n^(-1.5)+ n^0.5仍趋于∞,
故极限值为0
所以√n是比 ln(1+n^2)高阶的无穷大
于是√(n^3+n)比√n高阶,√n比ln(1+n^2)高阶
如果式子是多项式的话,
那就可以直接比较指数上的系数,那么系数大的一定是更高阶的无穷大,
比如√(n^3+n)比√n高阶,n^4-n^3比n^3高阶等等
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯