已知多项式(x2+mx+n)(x2-3x+4)展开后不含x3和x2项,试求m,n的值.
答案:2 悬赏:60 手机版
解决时间 2021-04-10 08:53
- 提问者网友:风月客
- 2021-04-09 20:18
已知多项式(x2+mx+n)(x2-3x+4)展开后不含x3和x2项,试求m,n的值.
最佳答案
- 五星知识达人网友:傲气稳了全场
- 2021-04-09 20:45
解:原式=x4-3x3+4x2+mx3-3mx2+4mx+nx2-3nx+4n,
=x4+(m-3)x3+(4-3m+n)x2+(4m-3n)x+4n.
由题意得m-3=0,4-3m+n=0,
解得m=3,n=5.解析分析:多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.先利用多项式乘法法则把多项式展开,那么原式=x4-3x3+4x2+mx3-3mx2+4mx+nx2-3nx+4n=x4+(m-3)x3+(4-3m+n)x2+(4m-3n)x+4n.由于展开后不含x3和x2项,则含x3和x2项的系数为0,由此可以得到m-3=0,4-3m+n=0,解方程组即可以求出m、n.点评:本题考查了多项式相乘法则以及多项式的项的定义.
=x4+(m-3)x3+(4-3m+n)x2+(4m-3n)x+4n.
由题意得m-3=0,4-3m+n=0,
解得m=3,n=5.解析分析:多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.先利用多项式乘法法则把多项式展开,那么原式=x4-3x3+4x2+mx3-3mx2+4mx+nx2-3nx+4n=x4+(m-3)x3+(4-3m+n)x2+(4m-3n)x+4n.由于展开后不含x3和x2项,则含x3和x2项的系数为0,由此可以得到m-3=0,4-3m+n=0,解方程组即可以求出m、n.点评:本题考查了多项式相乘法则以及多项式的项的定义.
全部回答
- 1楼网友:一把行者刀
- 2021-04-09 21:42
正好我需要
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯
正方形一边上任一点到这个正方形两条对角线的 |
阴历怎么看 ? |