11°15′ 22°30′ 135°的三角函数分别是多少啊,急需
答案:2 悬赏:20 手机版
解决时间 2021-11-13 05:16
- 提问者网友:焚苦与心
- 2021-11-12 07:07
11°15′ 22°30′ 135°的三角函数分别是多少啊,急需
最佳答案
- 五星知识达人网友:煞尾
- 2021-11-12 07:29
不用计算器也可以算的
11°15′=1/2×22°30′, 22°30’=1/2×45°
cos45°=√2/2,
sin22°30’=sin(45°/2)=√[(1-cos45°)2]=√[(1-√2/2)/2]=1/2√(2-√2)
cos22°30’=cos(45°/2)=√[(1+√2/2)/2]=1/2√(2+√2)
tan22°30’=sin22°30’/cos22°30’=√(2-√2)/√(2+√2)=√(3-√2)
sin11°15’=sin(22°30’/2)=√[(1-cos22°30’)/2]=1/2√[2-√(2+√2)]
cos11°15’=cos=(22°30’/2)= √[(1+cos22°30’)/2]= 1/2√[2+√(2+√2)]
tan11°15’=sin11°15’/cos11°15’=√[7+4√2-(4+2√2)√(2+√2)]
sin135°=sin45°=√2/2
cos135°=-cos45°=-√2/2
tan45°=sin45°/cos45°=-1
11°15′=1/2×22°30′, 22°30’=1/2×45°
cos45°=√2/2,
sin22°30’=sin(45°/2)=√[(1-cos45°)2]=√[(1-√2/2)/2]=1/2√(2-√2)
cos22°30’=cos(45°/2)=√[(1+√2/2)/2]=1/2√(2+√2)
tan22°30’=sin22°30’/cos22°30’=√(2-√2)/√(2+√2)=√(3-√2)
sin11°15’=sin(22°30’/2)=√[(1-cos22°30’)/2]=1/2√[2-√(2+√2)]
cos11°15’=cos=(22°30’/2)= √[(1+cos22°30’)/2]= 1/2√[2+√(2+√2)]
tan11°15’=sin11°15’/cos11°15’=√[7+4√2-(4+2√2)√(2+√2)]
sin135°=sin45°=√2/2
cos135°=-cos45°=-√2/2
tan45°=sin45°/cos45°=-1
全部回答
- 1楼网友:人间朝暮
- 2021-11-12 09:08
11°15′
=11.25°
22°30′
=22.5°
135°
先按度数,再按你想要的三角函数,如 tan
=11.25°
22°30′
=22.5°
135°
先按度数,再按你想要的三角函数,如 tan
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯