1,已知a,b,c.为直角三角形三边,c为斜边,证明:log(b+c)a+log(c-b)a=2log(b+c)a*log(c-b)a
2.设a,b,c为正数,且满足a^2+b^2=c^2.问:若log4(1+(b+c)/a)=1,log8(a+b-c)=2/3,求a,b,c的值
(PS:最好有过程.QUICKLY!)
1,已知a,b,c.为直角三角形三边,c为斜边,证明:log(b+c)a+log(c-b)a=2log(b+c)a*log(c-b)a
2.设a,b,c为正数,且满足a^2+b^2=c^2.问:若log4(1+(b+c)/a)=1,log8(a+b-c)=2/3,求a,b,c的值
(PS:最好有过程.QUICKLY!)
第一题很简单啊~~~~~
log(b+c)a+log(c-b)a=1/loga(b+c) +1/loga(c-b) =loga(c-b)+loga(b+c)/loga(b+c)*loga(c-b)=loga(c^2-b^2)/loga(b+c)*loga(c-b)
因为log(b+c)a+log(c-b)a=2log(b+c)a*log(c-b)a
所以loga(c^2-b^2)/loga(b+c)*loga(c-b)=2log(b+c)a*log(c-b)a
loga(c^2-b^2)={loga(b+c)*loga(c-b)}*{2log(b+c)a*log(c-b)a}
loga(c^2-b^2)=2
a^2=c^2-b^2
因为a^2+b^2=c^2
所以log(b+c)a+log(c-b)a=2log(b+c)a*log(c-b)a
累死我了擦,一定要最佳-0-,第二题计算中..