等价的矩阵其特征根是否相等?为什么?等价的矩阵其特征值是否相等?为什么?
答案:2 悬赏:0 手机版
解决时间 2021-02-19 12:29
- 提问者网友:温旧梦泪无声
- 2021-02-18 15:06
等价的矩阵其特征根是否相等?为什么?等价的矩阵其特征值是否相等?为什么?
最佳答案
- 五星知识达人网友:旧脸谱
- 2021-02-18 16:24
相等.因为等价的矩阵都相似于同一个对角阵,而对角阵上的对角元便是特征值.设A、B与对角阵D相似,则存在相似变换矩阵Q使得Q^(-1)DQ=A.设λ(n)是A的第n个特征值,x(n)是相应的特征向量,则λ(n)x(n)=Ax(n)=Q^(-1)DQx(n)⇒D[Qx(n)]=λ(n)[Qx(n)]可见,λ(n)就是D的特征值,所以det(D-λ(n)I)=0,又因为D是对角阵,所以由det(D-λ(n)I)=0不难算出λ(n)就是D的对角元,相应的特征矢量为[Qx(n)].同理可证明B的特征值是D的对角元,所以等价的矩阵A、B具有相同的特征值.
全部回答
- 1楼网友:笑迎怀羞
- 2021-02-18 17:39
我学会了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯