数学符号大全
答案:2 悬赏:70 手机版
解决时间 2021-02-28 17:25
- 提问者网友:欺烟
- 2021-02-28 09:59
数学符号大全
最佳答案
- 五星知识达人网友:人類模型
- 2021-02-28 10:14
几何符号
⊥ ‖ ∠ ⌒ ⊙ ≡ ≌ △
2 代数符号
∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶
3运算符号
× ÷ √ ±
4集合符号
∪ ∩ ∈
5特殊符号
∑ π(圆周率)
6推理符号
|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ←
↑ → ↓ ↖ ↗ ↘ ↙ ‖ ∧ ∨
&; §
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
Γ Δ Θ ∧ Ξ Ο ∏ ∑ Φ Χ Ψ Ω
α β γ δ ε ζ η θ ι κ λ μ ν
ξ ο π ρ σ τ υ φ χ ψ ω
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ
ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ
∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ‖ ∧ ∨ ∩ ∪ ∫ ∮
∴ ∵ ∶ ∷ ∽ ≈ ≌ ≈ ≠ ≡ ≤ ≥ ≤ ≥ ≮ ≯ ⊕ ⊙ ⊥
⊿ ⌒ ℃
指数0123:o123
上述符号所表示的意义和读法(中英文参照)
+ plus 加号;正号
- minus 减号;负号
± plus or minus 正负号
× is multiplied by 乘号
÷ is divided by 除号
= is equal to 等于号
≠ is not equal to 不等于号
≡ is equivalent to 全等于号
≌ is approximately equal to 约等于
≈ is approximately equal to 约等于号
< is less than 小于号
> is more than 大于号
≤ is less than or equal to 小于或等于
≥ is more than or equal to 大于或等于
% per cent 百分之…
∞ infinity 无限大号
√ (square) root 平方根
X squared X的平方
X cubed X的立方
∵ since; because 因为
∴ hence 所以
∠ angle 角
⌒ semicircle 半圆
⊙ circle 圆
○ circumference 圆周
△ triangle 三角形
⊥ perpendicular to 垂直于
∪ intersection of 并,合集
∩ union of 交,通集
∫ the integral of …的积分
∑ (sigma) summation of 总和
° degree 度
′ minute 分
〃 second 秒
# number …号
@ at 单价
⊥ ‖ ∠ ⌒ ⊙ ≡ ≌ △
2 代数符号
∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶
3运算符号
× ÷ √ ±
4集合符号
∪ ∩ ∈
5特殊符号
∑ π(圆周率)
6推理符号
|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ←
↑ → ↓ ↖ ↗ ↘ ↙ ‖ ∧ ∨
&; §
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
Γ Δ Θ ∧ Ξ Ο ∏ ∑ Φ Χ Ψ Ω
α β γ δ ε ζ η θ ι κ λ μ ν
ξ ο π ρ σ τ υ φ χ ψ ω
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ
ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ
∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ‖ ∧ ∨ ∩ ∪ ∫ ∮
∴ ∵ ∶ ∷ ∽ ≈ ≌ ≈ ≠ ≡ ≤ ≥ ≤ ≥ ≮ ≯ ⊕ ⊙ ⊥
⊿ ⌒ ℃
指数0123:o123
上述符号所表示的意义和读法(中英文参照)
+ plus 加号;正号
- minus 减号;负号
± plus or minus 正负号
× is multiplied by 乘号
÷ is divided by 除号
= is equal to 等于号
≠ is not equal to 不等于号
≡ is equivalent to 全等于号
≌ is approximately equal to 约等于
≈ is approximately equal to 约等于号
< is less than 小于号
> is more than 大于号
≤ is less than or equal to 小于或等于
≥ is more than or equal to 大于或等于
% per cent 百分之…
∞ infinity 无限大号
√ (square) root 平方根
X squared X的平方
X cubed X的立方
∵ since; because 因为
∴ hence 所以
∠ angle 角
⌒ semicircle 半圆
⊙ circle 圆
○ circumference 圆周
△ triangle 三角形
⊥ perpendicular to 垂直于
∪ intersection of 并,合集
∩ union of 交,通集
∫ the integral of …的积分
∑ (sigma) summation of 总和
° degree 度
′ minute 分
〃 second 秒
# number …号
@ at 单价
全部回答
- 1楼网友:春色三分
- 2021-02-28 11:15
数量符号
如:i,2+i,a,x,自然对数底e,圆周率π。
运算符号
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),绝对值符号“| |”,微分(dx),积分(∫),闭合曲面(曲线)积分(∮)等。
关系符号
如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“⊆”是“包含”符号等。“|”表示“能整除”(例如a|b 表示 a能整除b),x可以代表未知数,y也可以代表未知数,任何字母都可以代表未知数。
结合符号
如小括号“()”中括号“[ ]”,大括号“{ }”横线“—”,比如(2+1)+3=6,[2.5x(23+2)+1]=x,{3.5+[3+1]+1=y
性质符号
如正号“+”,负号“-”,正负号“±”
省略符号
如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),
∵因为,(一个脚站着的,站不住)
∴所以,(两个脚站着的,能站住) (口诀:因为站不住,所以两个点)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
排列组合符号
C-组合数
A-排列数
N-元素的总个数
R-参与选择的元素个数
!-阶乘,如5!=5×4×3×2×1=120
C-Combination- 组合
A-Arrangement-排列
离散数学符号(未全)
∀ 全称量词
∃ 存在量词
├ 断定符(公式在L中可证)
╞ 满足符(公式在E上有效,公式在E上可满足)
┐ 命题的“非”运算
∧ 命题的“合取”(“与”)运算
∨ 命题的“析取”(“或”,“可兼或”)运算
→ 命题的“条件”运算
↔ 命题的“双条件”运算的
A<=>B 命题A 与B 等价关系
A=>B 命题 A与 B的蕴涵关系
A* 公式A 的对偶公式
wff 合式公式
iff 当且仅当
↑ 命题的“与非” 运算( “与非门” )
↓ 命题的“或非”运算( “或非门” )
□ 模态词“必然”
◇ 模态词“可能”
φ 空集
∈ 属于 A∈B 则为A属于B(∉不属于)
P(A) 集合A的幂集
|A| 集合A的点数
R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”
א 阿列夫
⊆ 包含
⊂(或下面加 ≠) 真包含
∪ 集合的并运算
∩ 集合的交运算
- (~) 集合的差运算
〡 限制
[X](右下角R) 集合关于关系R的等价类
A/ R 集合A上关于R的商集
[a] 元素a 产生的循环群
I (i大写) 环,理想
Z/(n) 模n的同余类集合
r(R) 关系 R的自反闭包
s(R) 关系 的对称闭包
CP 命题演绎的定理(CP 规则)
EG 存在推广规则(存在量词引入规则)
ES 存在量词特指规则(存在量词消去规则)
UG 全称推广规则(全称量词引入规则)
US 全称特指规则(全称量词消去规则)
R 关系
r 相容关系
R○S 关系 与关系 的复合
domf 函数 的定义域(前域)
ranf 函数 的值域
f:X→Y f是X到Y的函数
GCD(x,y) x,y最大公约数
LCM(x,y) x,y最小公倍数
aH(Ha) H 关于a的左(右)陪集
Ker(f) 同态映射f的核(或称 f同态核)
[1,n] 1到n的整数集合
d(u,v) 点u与点v间的距离
d(v) 点v的度数
G=(V,E) 点集为V,边集为E的图
W(G) 图G的连通分支数
k(G) 图G的点连通度
△(G) 图G的最大点度
A(G) 图G的邻接矩阵
P(G) 图G的可达矩阵
M(G) 图G的关联矩阵
C 复数集
N 自然数集(包含0在内)
N* 正自然数集
P 素数集
Q 有理数集
R 实数集
Z 整数集
Set 集范畴
Top 拓扑空间范畴
Ab 交换群范畴
Grp 群范畴
Mon 单元半群范畴
Ring 有单位元的(结合)环范畴
Rng 环范畴
CRng 交换环范畴
R-mod 环R的左模范畴
mod-R 环R的右模范畴
Field 域范畴
Poset 偏序集范畴
部分希腊字母数学符号
字母 古希腊语名称 英语名称 古希腊语发音 现代希腊语发音 中文注音 数学意思
Α α ?λφα Alpha [a],[a?] [a] 阿尔法 角度;系数
Β β β?τα Beta [b] [v] 贝塔 角度;系数
Δ δ δ?λτα Delta [d] [ð] 德尔塔 变动;求根公式
Ε ε ?ψιλον Epsilon [e] [e] 伊普西隆 对数之基数
Ζ ζ ζ?τα Zeta [zd] [z] 泽塔 系数;
Θ θ θ?τα Theta [t?] [θ] 西塔 温度;相位角
Ι ι ι?τα Iota [i] [i] 约塔 微小,一点儿
Λ λ λ?μβδα(现为λ?μδα) Lambda [l] [l] 兰姆达 波长(小写);体积
Μ μ μυ(现为μι) Mu [m] [m] 谬 微(千分之一);放大因数(小写)
Ξ ξ ξι Xi [ks] [ks] 克西 随机变量
Π π πι Pi [p] [p] 派 圆周率=圆周÷直径≈3.1416
Σ σ σ?γμα Sigma [s] [s] 西格玛 总和(大写)
Τ τ ταυ Tau [t] [t] 陶 时间常数
Φ φ φι Phi [p?] [f] 弗爱 辅助角
Ω ω ωμ?γα Omega [??] [o] 欧米咖 角
数学符号的意义
符号(Symbol) 意义(Meaning)
= 等于 is equal to
≠ 不等于 is not equal to
< 小于 is less than
> 大于 is greater than
|| 平行 is parallel to
≥ 大于等于 is greater than or equal to
≤ 小于等于 is less than or equal to
≡ 恒等于或同余
π 圆周率
|x| 绝对值 absolute value of X ∽ 相似 is similar to
≌ 全等 is equal to(especially for triangle )
>>远远大于号
<< 远远小于号
∪ 并集
∩ 交集
⊆ 包含于
⊙ 圆
\ 求商值
β bet 磁通系数;角度;系数(数学中常用作表示未知角)
φ fai 磁通;角(数学中常用作表示未知角)
∞ 无穷大
ln(x) 以e为底的对数
lg(x) 以10为底的对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
x - floor(x) 小数部分
∫f(x)dx 不定积分
∫[a:b]f(x)dx a到b的定积分
∑(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连加和,
如:i,2+i,a,x,自然对数底e,圆周率π。
运算符号
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),绝对值符号“| |”,微分(dx),积分(∫),闭合曲面(曲线)积分(∮)等。
关系符号
如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“⊆”是“包含”符号等。“|”表示“能整除”(例如a|b 表示 a能整除b),x可以代表未知数,y也可以代表未知数,任何字母都可以代表未知数。
结合符号
如小括号“()”中括号“[ ]”,大括号“{ }”横线“—”,比如(2+1)+3=6,[2.5x(23+2)+1]=x,{3.5+[3+1]+1=y
性质符号
如正号“+”,负号“-”,正负号“±”
省略符号
如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),
∵因为,(一个脚站着的,站不住)
∴所以,(两个脚站着的,能站住) (口诀:因为站不住,所以两个点)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
排列组合符号
C-组合数
A-排列数
N-元素的总个数
R-参与选择的元素个数
!-阶乘,如5!=5×4×3×2×1=120
C-Combination- 组合
A-Arrangement-排列
离散数学符号(未全)
∀ 全称量词
∃ 存在量词
├ 断定符(公式在L中可证)
╞ 满足符(公式在E上有效,公式在E上可满足)
┐ 命题的“非”运算
∧ 命题的“合取”(“与”)运算
∨ 命题的“析取”(“或”,“可兼或”)运算
→ 命题的“条件”运算
↔ 命题的“双条件”运算的
A<=>B 命题A 与B 等价关系
A=>B 命题 A与 B的蕴涵关系
A* 公式A 的对偶公式
wff 合式公式
iff 当且仅当
↑ 命题的“与非” 运算( “与非门” )
↓ 命题的“或非”运算( “或非门” )
□ 模态词“必然”
◇ 模态词“可能”
φ 空集
∈ 属于 A∈B 则为A属于B(∉不属于)
P(A) 集合A的幂集
|A| 集合A的点数
R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”
א 阿列夫
⊆ 包含
⊂(或下面加 ≠) 真包含
∪ 集合的并运算
∩ 集合的交运算
- (~) 集合的差运算
〡 限制
[X](右下角R) 集合关于关系R的等价类
A/ R 集合A上关于R的商集
[a] 元素a 产生的循环群
I (i大写) 环,理想
Z/(n) 模n的同余类集合
r(R) 关系 R的自反闭包
s(R) 关系 的对称闭包
CP 命题演绎的定理(CP 规则)
EG 存在推广规则(存在量词引入规则)
ES 存在量词特指规则(存在量词消去规则)
UG 全称推广规则(全称量词引入规则)
US 全称特指规则(全称量词消去规则)
R 关系
r 相容关系
R○S 关系 与关系 的复合
domf 函数 的定义域(前域)
ranf 函数 的值域
f:X→Y f是X到Y的函数
GCD(x,y) x,y最大公约数
LCM(x,y) x,y最小公倍数
aH(Ha) H 关于a的左(右)陪集
Ker(f) 同态映射f的核(或称 f同态核)
[1,n] 1到n的整数集合
d(u,v) 点u与点v间的距离
d(v) 点v的度数
G=(V,E) 点集为V,边集为E的图
W(G) 图G的连通分支数
k(G) 图G的点连通度
△(G) 图G的最大点度
A(G) 图G的邻接矩阵
P(G) 图G的可达矩阵
M(G) 图G的关联矩阵
C 复数集
N 自然数集(包含0在内)
N* 正自然数集
P 素数集
Q 有理数集
R 实数集
Z 整数集
Set 集范畴
Top 拓扑空间范畴
Ab 交换群范畴
Grp 群范畴
Mon 单元半群范畴
Ring 有单位元的(结合)环范畴
Rng 环范畴
CRng 交换环范畴
R-mod 环R的左模范畴
mod-R 环R的右模范畴
Field 域范畴
Poset 偏序集范畴
部分希腊字母数学符号
字母 古希腊语名称 英语名称 古希腊语发音 现代希腊语发音 中文注音 数学意思
Α α ?λφα Alpha [a],[a?] [a] 阿尔法 角度;系数
Β β β?τα Beta [b] [v] 贝塔 角度;系数
Δ δ δ?λτα Delta [d] [ð] 德尔塔 变动;求根公式
Ε ε ?ψιλον Epsilon [e] [e] 伊普西隆 对数之基数
Ζ ζ ζ?τα Zeta [zd] [z] 泽塔 系数;
Θ θ θ?τα Theta [t?] [θ] 西塔 温度;相位角
Ι ι ι?τα Iota [i] [i] 约塔 微小,一点儿
Λ λ λ?μβδα(现为λ?μδα) Lambda [l] [l] 兰姆达 波长(小写);体积
Μ μ μυ(现为μι) Mu [m] [m] 谬 微(千分之一);放大因数(小写)
Ξ ξ ξι Xi [ks] [ks] 克西 随机变量
Π π πι Pi [p] [p] 派 圆周率=圆周÷直径≈3.1416
Σ σ σ?γμα Sigma [s] [s] 西格玛 总和(大写)
Τ τ ταυ Tau [t] [t] 陶 时间常数
Φ φ φι Phi [p?] [f] 弗爱 辅助角
Ω ω ωμ?γα Omega [??] [o] 欧米咖 角
数学符号的意义
符号(Symbol) 意义(Meaning)
= 等于 is equal to
≠ 不等于 is not equal to
< 小于 is less than
> 大于 is greater than
|| 平行 is parallel to
≥ 大于等于 is greater than or equal to
≤ 小于等于 is less than or equal to
≡ 恒等于或同余
π 圆周率
|x| 绝对值 absolute value of X ∽ 相似 is similar to
≌ 全等 is equal to(especially for triangle )
>>远远大于号
<< 远远小于号
∪ 并集
∩ 交集
⊆ 包含于
⊙ 圆
\ 求商值
β bet 磁通系数;角度;系数(数学中常用作表示未知角)
φ fai 磁通;角(数学中常用作表示未知角)
∞ 无穷大
ln(x) 以e为底的对数
lg(x) 以10为底的对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
x - floor(x) 小数部分
∫f(x)dx 不定积分
∫[a:b]f(x)dx a到b的定积分
∑(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连加和,
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯