如图,△ABC是等边三角形,AE=CD,AD,BE相交于P,BQ⊥AD与Q,求证:∠PBQ=30°.
答案:2 悬赏:60 手机版
解决时间 2021-04-07 16:07
- 提问者网友:咪咪
- 2021-04-07 09:23
如图,△ABC是等边三角形,AE=CD,AD,BE相交于P,BQ⊥AD与Q,求证:∠PBQ=30°.
最佳答案
- 五星知识达人网友:轻熟杀无赦
- 2021-04-07 10:34
证明:∵△ABC是等边三角形,
∴∠BAC=∠C=60°,AB=AC,
∵AE=CD,
∴△ABE≌△CAD,
∴∠ABE=∠CAD,
∴∠BPQ=∠BAP+∠ABE=∠BAP+∠PAE=∠BAC=60°,
∵BQ⊥AD,
∴∠PBQ=30°.解析分析:根据等边三角形性质推出∠BAC=∠C=60°,AB=AC,证△ABE≌△CAD,推出∠ABE=∠CAD,根据三角形外角性质求出∠BPQ,根据三角形的内角和定理求出即可.点评:本题主要考查对三角形的内角和定理,三角形的外角性质,等边三角形的性质,全等三角形的性质和判定等知识点的理解和掌握,能运用性质求出∠BPQ的度数是解此题的关键.
∴∠BAC=∠C=60°,AB=AC,
∵AE=CD,
∴△ABE≌△CAD,
∴∠ABE=∠CAD,
∴∠BPQ=∠BAP+∠ABE=∠BAP+∠PAE=∠BAC=60°,
∵BQ⊥AD,
∴∠PBQ=30°.解析分析:根据等边三角形性质推出∠BAC=∠C=60°,AB=AC,证△ABE≌△CAD,推出∠ABE=∠CAD,根据三角形外角性质求出∠BPQ,根据三角形的内角和定理求出即可.点评:本题主要考查对三角形的内角和定理,三角形的外角性质,等边三角形的性质,全等三角形的性质和判定等知识点的理解和掌握,能运用性质求出∠BPQ的度数是解此题的关键.
全部回答
- 1楼网友:蓝房子
- 2021-04-07 11:18
这个问题的回答的对
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯