已知f(x)是定义在R上的奇函数,且y=f(x)的图像关于直线x=a对称,求证f(x)是周期函数
那个、f(2a+x)=f(-x)怎么得到的?
已知f(x)是定义在R上的奇函数,且y=f(x)的图像关于直线x=a对称,求证f(x)是周期函数
答案:1 悬赏:50 手机版
解决时间 2021-08-24 17:11
- 提问者网友:黑米和小志
- 2021-08-23 19:46
最佳答案
- 五星知识达人网友:愁杀梦里人
- 2021-08-23 20:33
证明:由题设可得:f(x)+f(-x)=0.且f(2a-x)=f(x).∴f(2a+x)=f(-x)=-f(x).即f(2a+x)=-f(x).===>f(4a+x)=f[2a+(2a+x)]=-f(2a+x)=f(x).===>f(4a+x)=f(x).∴函数f(x)是以4a为周期的周期函数.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯