如图所示,AD是△ABC外角∠EAC的平分线,AD与△ABC的外接圆交于点D,N为BC延长线上一点,ND交△ABC的外接圆于点M.求证:
(1)DB=DC;
(2)DC2=DM?DN.
如图所示,AD是△ABC外角∠EAC的平分线,AD与△ABC的外接圆交于点D,N为BC延长线上一点,ND交△ABC的外接
答案:1 悬赏:20 手机版
解决时间 2021-05-23 12:57
- 提问者网友:回忆在搜索
- 2021-05-23 06:50
最佳答案
- 五星知识达人网友:污到你湿
- 2021-05-23 08:07
证明:(1)∵四点A、B、C、D共圆,∴∠EAD=∠BCD,∠DAC=∠DBC,
∵AD是△ABC外角∠EAC的平分线,
∴∠EAD=∠DAC,
∴∠DBC=∠BCD.
∴DB=DC.
(2)连接BM,CM.
则∠DBM=∠DCM,∠CBM=∠CDM,
∴∠N=∠BCD-∠CDM=∠DBC-∠CBM=∠DBM=∠DCM,
又∵∠CDM公用,
∴△CDM∽△NDC.
∴
CD
ND=
DM
CD,
∴DC2=DM?DN.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯