计算:[1/4(1^4+3^4+5^4+……+19^4)]/[1/4(2^4+4^4+6^4+……+20^4)]
计算:[1/4(1^4+3^4+5^4+……+19^4)]/[1/4(2^4+4^4+6^4+……+20^4)]
答案:1 悬赏:0 手机版
解决时间 2021-05-03 11:34
- 提问者网友:人傍凄凉立暮秋
- 2021-05-02 13:12
最佳答案
- 五星知识达人网友:慢性怪人
- 2021-05-02 13:37
用公式1^4+2^4+.+n^4=n(n+1)(2n+1)(3n^2+3n-1)/30
所以 S10=1^4+2^4+.10^4 S20=1^4+2^4+.20^4 都可以计算出
原式=(S20-16S10)/16S10
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯