如图,四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.
试说明:(1)△CBE≌△CDF;
(2)AB+DF=AF.
如图,四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.试说明:(1)△CBE≌△CDF;(2)AB+DF=AF.
答案:2 悬赏:70 手机版
解决时间 2021-04-05 21:22
- 提问者网友:杀手的诗
- 2021-04-05 10:41
最佳答案
- 五星知识达人网友:青灯有味
- 2021-04-05 12:16
(1)证明:∵AC平分∠BAD,CE⊥AB,CF⊥AD
∴CE=CF
∵∠ABC+∠D=180°,∠ABC+∠EBC=180°
∴∠EBC=∠D
∵∠CEB=∠CFD=90°
∴△CBE≌△CDF
(2)证明:∵CE=CF,AC=AC
∴△ACE≌△ACF
∴AE=AF
∴AB+DF=AB+BE=AE=AF解析分析:(1)根据角平分线的性质可得到CE=CF,根据余角的性质可得到∠EBC=∠D,已知CE⊥AB,CF⊥AD,从而利用AAS即可判定△CBE≌△CDF.
(2)已知EC=CF,AC=AC,则根据HL判定△ACE≌△ACF得AE=AF,最后证得AB+DF=AF即可.点评:本题考查了全等三角形的判定和性质;证明线段相等往往通过三角形全等来证明,还要运用相等的线段进行转移,这是很重要的方法,注意掌握.
∴CE=CF
∵∠ABC+∠D=180°,∠ABC+∠EBC=180°
∴∠EBC=∠D
∵∠CEB=∠CFD=90°
∴△CBE≌△CDF
(2)证明:∵CE=CF,AC=AC
∴△ACE≌△ACF
∴AE=AF
∴AB+DF=AB+BE=AE=AF解析分析:(1)根据角平分线的性质可得到CE=CF,根据余角的性质可得到∠EBC=∠D,已知CE⊥AB,CF⊥AD,从而利用AAS即可判定△CBE≌△CDF.
(2)已知EC=CF,AC=AC,则根据HL判定△ACE≌△ACF得AE=AF,最后证得AB+DF=AF即可.点评:本题考查了全等三角形的判定和性质;证明线段相等往往通过三角形全等来证明,还要运用相等的线段进行转移,这是很重要的方法,注意掌握.
全部回答
- 1楼网友:从此江山别
- 2021-04-05 13:04
这个问题的回答的对
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯