已知如图,在△ABC中,AD平分∠BAC交BC于D,E为AD延长线上一点,且∠ACE=∠B.求证:CD=CE.
已知如图,在△ABC中,AD平分∠BAC交BC于D,E为AD延长线上一点,且∠ACE=∠B.求证:CD=CE.
答案:1 悬赏:0 手机版
解决时间 2021-04-22 19:20
- 提问者网友:咪咪
- 2021-04-22 08:46
最佳答案
- 五星知识达人网友:过活
- 2021-04-22 09:28
∵在△ABC中,AD平分∠BAC,
∴∠BAD=∠CAD,
∵∠CDE=∠ADB=180°-∠B-∠BAD,∠E=180°-∠CAD-∠ACE,
又∵∠ACE=∠B,
∴∠CDE=∠E,
∴CD=CE.
试题解析:
由在△ABC中,AD平分∠BAC,根据角平分线的定义,即可得∠BAD=∠CAD,然后由三角形内角和定理与对顶角相等,可得∠CDE=∠ADB=180°-∠B-∠BAD,∠E=180°-∠CAD-∠ACE,又由∠ACE=∠B,即可证得∠CDE=∠E,根据等角对等边,即可证得结论.
名师点评:
本题考点: 等腰三角形的判定与性质;三角形内角和定理.
考点点评: 此题考查了等腰三角形的判定、三角形内角和定理以及角平分线的定义.此题难度不大,解题的关键是注意数形结合思想的应用.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯