定义R在偶函数y=f(x)满足f(x+1)=-f(x) 且当x∈[0,]时单调递增比较f﹙1/3﹚ f﹙-5﹚ f﹙5/2﹚的大
小
补充下是x∈[0,1]
定义R在偶函数y=f(x)满足f(x+1)=-f(x) 且当x∈[0,]时单调递增比较f﹙1/3﹚ f﹙-5﹚ f﹙5/
答案:1 悬赏:70 手机版
解决时间 2021-01-03 08:07
- 提问者网友:你挡着我发光了
- 2021-01-03 02:57
最佳答案
- 五星知识达人网友:鸠书
- 2021-01-03 03:12
/>f(x+1)=-f(x)
f(x)=-f(x-1),
所以f(x+1)=f(x-1),
即f(x)周期为2,
f﹙-5﹚=f(1),
f﹙5/2﹚=f(1/2),
因为当x∈[0,1]时单调递增,
所以f(1)>f(1/2)>f(1/3)
即 f(-5)>f(5/2)>f(1/3).
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯