f(x)在[a,b]上三阶可导,且f`(a)=f``(a),f```(x)>0,证函数单调递增,且曲线为凹
答案:2 悬赏:10 手机版
解决时间 2021-01-02 22:07
- 提问者网友:谁的错
- 2021-01-01 23:01
f(x)在[a,b]上三阶可导,且f`(a)=f``(a),f```(x)>0,证函数单调递增,且曲线为凹
最佳答案
- 五星知识达人网友:长青诗
- 2021-01-06 18:35
由条件f'(a)=f"(a),f"'(x)>0,可知 f"(a)=[f'(a)]'=f"'(a)>0,即曲线为凹的;又
f'(a)=f"(a)>0,
可知函数单调递增。
f'(a)=f"(a)>0,
可知函数单调递增。
全部回答
- 1楼网友:青尢
- 2021-01-06 19:22
构造函数f(x)=f(x)×e^(g(x)),则f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,由罗尔中值定理,存在一个ξ∈(a,b),使f'(ξ)=0,此即f'(ξ)+f(ξ)g'(ξ)=0.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯