永发信息网

schur 不等式证明,详细点谢谢,下周回来看

答案:1  悬赏:0  手机版
解决时间 2021-04-29 13:33
schur 不等式证明,详细点谢谢,下周回来看
最佳答案

舒尔(Schur)不等式  


说明,对于所有的非负实数x、y、z和正数t,都有:已知x,y,z>=0
  则∑(x^t)(x-y)(x-z)>=0
  当且仅当x = y = z,或其中两个数相等而另外一个为零时,等号“=”成立。当t是正的偶数时,不等式对所有的实数x、y和z都成立。
  舒尔(schur)不等式的证明:
  不妨设x>=y>=z
  ∑x(x-y)(x-z)
  =x(x-y)(x-z)+y(y-x)(y-z)+z(z-x)(z-y)
  >=x(x-y)(x-z)+y(y-x)(y-z)
  >=x(x-y)(y-z)+y(y-x)(y-z)
  =(x-y)^2(y-z)
  >=0
  t不是1时同理可证
  事实上,当t为任意实数时,我们仍可证明Schur不等式成立。
  Schur不等式虽不是联赛大纲中规定掌握的不等式,但在联赛不等式证明题中仍能发挥重要作用。


赫尔德不等式是数学分析的一条不等式,取名自奥图·赫尔德(Otto H?lder)。这是一条揭示Lp空间的相互关系的基本不等式:


设S为测度空间,,及,设f在Lp(S)内,g在Lq(S)内。则f g在L1(S)内,且有




若S取作{1,...,n}附计数测度,便得赫尔德不等式的特殊情形:对所有实数(或复数)x1, ..., xn; y1, ..., yn,有




我们称p和q互为赫尔德共轭。


若取S为自然数集附计数测度,便得与上类似的无穷级数不等式。


当p = q = 2,便得到柯西-施瓦茨不等式。


赫尔德不等式可以证明Lp空间上一般化的三角不等式,闵可夫斯基不等式,和证明Lp空间是Lq空间的对偶。

[编辑] 备注

  • 在赫尔德共轭的定义中,1/∞意味着零。


  • 如果1 ≤ p,q < ∞,那么||f ||p和||g||q表示(可能无穷的)表达式:


以及


  • 如果p = ∞,那么||f ||表示|f |的本性上确界,||g||也类似。


  • 赫尔德不等式的右端,0乘以∞以及∞乘以0意味着 0。把a > 0乘以∞,则得出 ∞。
[编辑] 证明

赫尔德不等式有许多证明,主要的想法是杨氏不等式。


如果||f ||p = 0,那么f μ-几乎处处为零,且乘积fg μ-几乎处处为零,因此赫尔德不等式的左端为零。如果||g||q = 0也是这样。因此,我们可以假设||f ||p > 0且||g||q > 0。


如果||f ||p = ∞或||g||q = ∞,那么不等式的右端为无穷大。因此,我们可以假设||f ||p和||g||q位于(0,∞)内。


如果p = ∞且q = 1,那么几乎处处有|fg| ≤ ||f || |g|,不等式就可以从勒贝格积分的单调性推出。对于p = 1和q = ∞,情况也类似。因此,我们还可以假设p, q ∈ (1,∞)。


分别用f和g除||f ||p||g||q,我们可以假设:




我们现在使用杨氏不等式:




对于所有非负的a和b,当且仅当ap = bq时等式成立。因此:




两边积分,得:




这便证明了赫尔德不等式。


在p ∈ (1,∞)和||f ||p = ||g||q = 1的假设下,等式成立当且仅当几乎处处有|f |p = |g|q。更一般地,如果||f ||p和||g||q位于(0,∞)内,那么赫尔德不等式变为等式,当且仅当存在α, β > 0(即α = ||g||q且β = ||f ||p),使得:



μ-几乎处处 (*)

||f ||p = 0的情况对应于(*)中的β = 0。||g||q = 的情况对应于(*)中的α = 0。


****************************


希望对你有用

我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯