高数 微分中值定理
设函数f(x)在[0,1]上有三阶导数,且f(0)=0,f(1)=1/2,f'(1/2)=0,求证存在€属于(0,1),使得|f'''(€)|>=12
高数 微分中值定理设函数f(x)在[0,1]上有三阶导数,且f(0)=0,f(1)=1/2,f’(1/2)=0,求证存在
答案:1 悬赏:10 手机版
解决时间 2021-07-23 02:43
- 提问者网友:寂寞撕碎了回忆
- 2021-07-22 11:48
最佳答案
- 五星知识达人网友:神也偏爱
- 2021-07-22 13:05
将f(0)和f(1)在x=0.5做Taylor展式即可.
0=f(0)=f(0.5)+0.5f‘’(0.5)*(0.5)^2-f'''(c)/48;
0.5=f(1)=f(0.5)+0.5f''(0.5)*(0.5)^2+f'''(d)/48;
两式相减,化简取绝对值得
24=12.
故结论成立.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯