什么叫质数
答案:8 悬赏:0 手机版
解决时间 2021-01-06 22:17
- 提问者网友:了了无期
- 2021-01-06 01:41
什么叫质数
最佳答案
- 五星知识达人网友:撞了怀
- 2021-01-06 02:38
质数:又称素数,有无限个。质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数。
性质:
(1)质数p的约数只有两个:1和p。
(2)初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。
(3)质数的个数是 无限的。
(4)质数的个数公式是不减函数。
(5)若n为 正整数,在到之间至少有一个质数。
(6)若n为大于或等于2的正整数,在n到之间至少有一个质数。
(7)若质数p为不超过n()的最大质数,则。
(8)所有大于10的质数中,个位数只有1,3,7,9。
性质:
(1)质数p的约数只有两个:1和p。
(2)初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。
(3)质数的个数是 无限的。
(4)质数的个数公式是不减函数。
(5)若n为 正整数,在到之间至少有一个质数。
(6)若n为大于或等于2的正整数,在n到之间至少有一个质数。
(7)若质数p为不超过n()的最大质数,则。
(8)所有大于10的质数中,个位数只有1,3,7,9。
全部回答
- 1楼网友:过活
- 2021-01-06 07:51
一到六年级的书课本上的定义
- 2楼网友:逐風
- 2021-01-06 07:40
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的地位。
基本定理
算术基本定理: 任何大于1的正整数n可以唯一表示成有限个素数的乘积: n=p_1p_2...p_s, 这里p_1≤p_2 ≤...≤p_s是素数。 这一表达式也称为n的标准分解式。 算术基本定理是初等数论中最基本的定理。由此定理, 我们可以重新定义两个整数的最大公因子和最小公倍数等等概念。 1不能称作素数,是因为要确保算术基本定理所要求的唯一性成立。这一解释可参看华罗庚《数论导引》
基本特点
最小的素数是2, 他也是唯一的偶素数。 最前面的素数依次排列为:2,3,5,7,11,13,17,...... 不是质数且大于1的正整数称为合数。 质数表上的质数请见素数表。 依据定义得公式: 设A=n2+b=(n-x)(n+y),除n-x=1以外无正整数。故有: y=(b+nx)/(n-x) (x 判断质数的技巧
根据质数的定义,在判断一个数n是否是质数时,我们只要用1至n-1去除n,看看能否整除即可。但我们有更好的办法。先找一个数m,使m的平方大于n,再用<=m的质数去除n,如果都不能整除,则n必然是质数。如我们要判断1993是不是质数,50*50>1993,那么我们只要用1993去除<50的质数就可以了。100以内的质数有25个,还是比较好记的,我们只要记熟100以内质数,就可以快速判断10000以内的数是不是质数了
基本定理
算术基本定理: 任何大于1的正整数n可以唯一表示成有限个素数的乘积: n=p_1p_2...p_s, 这里p_1≤p_2 ≤...≤p_s是素数。 这一表达式也称为n的标准分解式。 算术基本定理是初等数论中最基本的定理。由此定理, 我们可以重新定义两个整数的最大公因子和最小公倍数等等概念。 1不能称作素数,是因为要确保算术基本定理所要求的唯一性成立。这一解释可参看华罗庚《数论导引》
基本特点
最小的素数是2, 他也是唯一的偶素数。 最前面的素数依次排列为:2,3,5,7,11,13,17,...... 不是质数且大于1的正整数称为合数。 质数表上的质数请见素数表。 依据定义得公式: 设A=n2+b=(n-x)(n+y),除n-x=1以外无正整数。故有: y=(b+nx)/(n-x) (x
根据质数的定义,在判断一个数n是否是质数时,我们只要用1至n-1去除n,看看能否整除即可。但我们有更好的办法。先找一个数m,使m的平方大于n,再用<=m的质数去除n,如果都不能整除,则n必然是质数。如我们要判断1993是不是质数,50*50>1993,那么我们只要用1993去除<50的质数就可以了。100以内的质数有25个,还是比较好记的,我们只要记熟100以内质数,就可以快速判断10000以内的数是不是质数了
- 3楼网友:未来江山和你
- 2021-01-06 07:07
能被1和自身整除的数就是质数
- 4楼网友:一秋
- 2021-01-06 06:44
不能被(除一外)任何整数整除的数,如1,3,5,7,11,13,17.....dd
- 5楼网友:春色三分
- 2021-01-06 05:29
除能被自身和1整除外不能被其他数整除的数叫做质数。
- 6楼网友:渊鱼
- 2021-01-06 04:33
只有1和它本身两个因数的自然数,叫质数(或称素数)。
质数的个数是无穷的。
相关定理:
①在一个大于1的数a和它的2倍之间(即区间(a, 2a]中)必存在至少一个素数。
②存在任意长度的素数等差数列。(格林和陶哲轩,2004年)
③一个偶数可以写成两个质数之和,其中每一个数字都最多祇有9个质因数。(挪威数学家布朗,1920年)
④一个偶数必定可以写成一个质数加上一个合成数,其中的因子个数有上界。(瑞尼,1948年)
⑤一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为 (1 + 5) (中国潘承洞,1968年)
⑥一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。简称为 (1 + 2) (中国陈景润)
质数的个数是无穷的。
相关定理:
①在一个大于1的数a和它的2倍之间(即区间(a, 2a]中)必存在至少一个素数。
②存在任意长度的素数等差数列。(格林和陶哲轩,2004年)
③一个偶数可以写成两个质数之和,其中每一个数字都最多祇有9个质因数。(挪威数学家布朗,1920年)
④一个偶数必定可以写成一个质数加上一个合成数,其中的因子个数有上界。(瑞尼,1948年)
⑤一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为 (1 + 5) (中国潘承洞,1968年)
⑥一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。简称为 (1 + 2) (中国陈景润)
- 7楼网友:迟山
- 2021-01-06 03:57
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的地位。
基本定理
算术基本定理: 任何大于1的正整数n可以唯一表示成有限个素数的乘积: n=p_1p_2...p_s, 这里p_1≤p_2 ≤...≤p_s是素数。 这一表达式也称为n的标准分解式。 算术基本定理是初等数论中最基本的定理。由此定理, 我们可以重新定义两个整数的最大公因子和最小公倍数等等概念。 1不能称作素数,是因为要确保算术基本定理所要求的唯一性成立。这一解释可参看华罗庚《数论导引》
基本特点
最小的素数是2, 他也是唯一的偶素数。 最前面的素数依次排列为:2,3,5,7,11,13,17,...... 不是质数且大于1的正整数称为合数。 质数表上的质数请见素数表。 依据定义得公式: 设A=n2+b=(n-x)(n+y),除n-x=1以外无正整数。故有: y=(b+nx)/(n-x) (x 判断质数的技巧
根据质数的定义,在判断一个数n是否是质数时,我们只要用1至n-1去除n,看看能否整除即可。但我们有更好的办法。先找一个数m,使m的平方大于n,再用<=m的质数去除n,如果都不能整除,则n必然是质数。如我们要判断1993是不是质数,50*50>1993,那么我们只要用1993去除<50的质数就可以了。100以内的质数有25个,还是比较好记的,我们只要记熟100以内质数,就可以快速判断10000以内的数是不是质数了。
基本定理
算术基本定理: 任何大于1的正整数n可以唯一表示成有限个素数的乘积: n=p_1p_2...p_s, 这里p_1≤p_2 ≤...≤p_s是素数。 这一表达式也称为n的标准分解式。 算术基本定理是初等数论中最基本的定理。由此定理, 我们可以重新定义两个整数的最大公因子和最小公倍数等等概念。 1不能称作素数,是因为要确保算术基本定理所要求的唯一性成立。这一解释可参看华罗庚《数论导引》
基本特点
最小的素数是2, 他也是唯一的偶素数。 最前面的素数依次排列为:2,3,5,7,11,13,17,...... 不是质数且大于1的正整数称为合数。 质数表上的质数请见素数表。 依据定义得公式: 设A=n2+b=(n-x)(n+y),除n-x=1以外无正整数。故有: y=(b+nx)/(n-x) (x
根据质数的定义,在判断一个数n是否是质数时,我们只要用1至n-1去除n,看看能否整除即可。但我们有更好的办法。先找一个数m,使m的平方大于n,再用<=m的质数去除n,如果都不能整除,则n必然是质数。如我们要判断1993是不是质数,50*50>1993,那么我们只要用1993去除<50的质数就可以了。100以内的质数有25个,还是比较好记的,我们只要记熟100以内质数,就可以快速判断10000以内的数是不是质数了。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯