定义在实数集上的单调函数f(x)满足f(3)=log底数是2对数是3,且对任意x、y属于R,都有f(x+y)=f(x)+f(y),证
(1)证明f(x)是奇函数
(2)若f(k*3^)+f(3^-9^-2)
定义在实数集上的单调函数f(x)满足f(3)=log底数是2对数是3,且对任意x、y属于R,都有f(x+y)=f(x)+
答案:2 悬赏:10 手机版
解决时间 2021-12-25 13:05
- 提问者网友:黑米和小志
- 2021-12-24 18:45
最佳答案
- 五星知识达人网友:患得患失的劫
- 2021-12-24 19:51
(1)判断一个函数的奇偶性
定义域(题目已给定R 关于原点对称 符合)
形式f(x)=-f(x)或f(x)+f(-x)=0
令y=0 f(x)=f(x)+f(0) f(0)=0
再令y=-x f(0)=f(x)+f(-x)=0 得证
(2)先求函数单调性
f(x+3)=f(x)+f(3) f(x+3)-f(x)=f(3)>0
x+3>x函数是单调增的
利用f(x+y)=f(x)+f(y) 可以将不等式变成f(k*3^+3^-9^-2)
全部回答
- 1楼网友:廢物販賣機
- 2021-12-24 20:24
我明天再问问老师,叫他解释下这个问题
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯