若f(x)=∫(1~x^2)e^(-t^2)dt(积分区间为1到x^2),计算定积分∫xf(x)dx积分区间为0到1
若f(x)=∫(1~x^2)e^(-t^2)dt(积分区间为1到x^2),计算定积分∫xf(x)dx积分区间为0到1
答案:1 悬赏:10 手机版
解决时间 2021-08-20 22:57
- 提问者网友:听门外雪花风
- 2021-08-20 14:33
最佳答案
- 五星知识达人网友:三千妖杀
- 2021-08-20 15:38
f'(x)=2xe∧-x^4
原式=1/2x^2f(x)(0~1)-∫(0~1)1/2x^2f'(x)dx
(分部积分法)
=1/2x^2f(x)(0~1) 1/4e^-x∧4(0~1)
(当x取0或1时)1/2xf(x)=0所以
原式=1/4e-x^4(0~1)=(e^-1-1)/4
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯