一道数列题 设0<a1<1/2,a(n+1)=f(an),n∈N*,证明an<1/(n+1)
答案:1 悬赏:10 手机版
解决时间 2021-03-06 09:08
- 提问者网友:谁的错
- 2021-03-06 03:17
一道数列题 设0<a1<1/2,a(n+1)=f(an),n∈N*,证明an<1/(n+1)
最佳答案
- 五星知识达人网友:风格不统一
- 2021-03-06 04:23
f(x)=x-3/2*x^2=-3/2(x^2-2/3x)=-3/2(x-1/3)^2+1/6<=1/6且f(x)在(0,1/3]上是增函数,下面用归纳法证明,
当n=1时,0假设当n=k时,0a(k+1)=f(ak)=ak-3/2*ak^2=-3/2(ak^2-2/3ak)=-3/2(ak-1/3)^2+1/6<=1/6,
由于f(x)在(0,1/3]上是增函数,则当0a(k+1)>f(0)=0,ak=0时,
a(k+1) f(1/(k+1))=1/(k+1)-3/2*1/(k+1)^2=1/(k+1)[1-3/2*1/(k+1)]=1/(k+1)*(2k-1)/[2(k+1)]=(2k-1)/[2(k+1)^2]
(2k-1)/[2(k+1)^2]-1/(k+2)=[(2k-1)(k+2)-2(k+1)^2]/[2(k+1)^2(k+2)]=(-k-4)/[2(k+1)^2(k+2)]<0,
故a(k+1)
当n=1时,0假设当n=k时,0a(k+1)=f(ak)=ak-3/2*ak^2=-3/2(ak^2-2/3ak)=-3/2(ak-1/3)^2+1/6<=1/6,
由于f(x)在(0,1/3]上是增函数,则当0a(k+1)>f(0)=0,ak=0时,
a(k+1)
(2k-1)/[2(k+1)^2]-1/(k+2)=[(2k-1)(k+2)-2(k+1)^2]/[2(k+1)^2(k+2)]=(-k-4)/[2(k+1)^2(k+2)]<0,
故a(k+1)
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯