冬天十度提高二十五度和夏天二十八度提高四十三度所需功率多少
答案:1 悬赏:0 手机版
解决时间 2021-11-21 23:01
- 提问者网友:锁深秋
- 2021-11-21 10:03
冬天十度提高二十五度和夏天二十八度提高四十三度所需功率多少
最佳答案
- 五星知识达人网友:舊物识亽
- 2021-11-21 10:08
A 0° 30° 45° 60° 90° sinA 0 1/2 √2/2 √3/2 1 cosA 1 √3/2 √2/2 1/2 0 tanA 0 √3/3 1 √3 None cotA None √3 1 √3/3 0 正弦 余弦 正切 余切 0 0 1 0 不存在 π/6 1/2 √3/2 √3/3 √3 π/4 √2/2 √2/2 1 1 π/3 √3/2 1/2 √3 √3/3 π/2 1 0 不存在 0 π 0 -1 0 不存在平方关系 sin^2(α)+cos^2(α)=1 cos(2α)=cos^2(α)-sin^2(α)=1- 2sin^2(α)=2cos^2(α)-1 sin(2α)=2sin(α)cos(α) tan^2(α)+1=1/cos^2(α) 2sin^2(α)=1-cos(2α) cot^2(α)+1=1/sin^2(α) 积的关系 sinα=tanα×cosα cosα=cotα×sinα tanα=sinα×secα cotα=cosα×cscα secα=tanα×cscα cscα=secα×cotα 倒数关系 tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα ·对称性 180度-α的终边和α的终边关于y轴对称。 -α的终边和α的终边关于x轴对称。 180度+α的终边和α的终边关于原点对称。 90度-α的终边和α的终边关于y=x对称。诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等 k是整数 sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα sec(2kπ+α)=secα csc(2kπ+α)=cscα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系 sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sec(π+α)=-secα csc(π+α)=-cscα 公式三:任意角α与 -α的三角函数值之间的关系 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sec(-α)=secα csc(-α)=-cscα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系 sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sec(π-α)=-secα csc(π-α)=cscα 公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系 sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sec(2π-α)=secα csc(2π-α)=-cscα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系 sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sec(π/2+α)=-cscα csc(π/2+α)=secα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sec(π/2-α)=cscα csc(π/2-α)=secα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sec(3π/2+α)=cscα csc(3π/2+α)=-secα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sec(3π/2-α)=-cscα csc(3π/2-α)=-secα
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯