什么是数学模型,数学模型是什么? 20分
答案:1 悬赏:50 手机版
解决时间 2021-05-08 12:44
- 提问者网友:骨子里的高雅
- 2021-05-07 21:12
什么是数学模型,数学模型是什么? 20分
最佳答案
- 五星知识达人网友:北城痞子
- 2021-05-07 22:46
数学模型是指根据对研究对象所观察到的现象及其实践经验,归结成的一套反映对象某些主要数量关系的数学公式、逻辑准则和具体算法。这种科学方法常用来描述对象的运动规律。
20世纪20年代,意大利数学家伏尔特拉根据捕食者种群与被捕食者种群相互关系,对捕鱼建立的微分方程“捕食模型”证明:超过一定的捕捞量就会使大鱼减少而小鱼增加,如适当减少捕捞量则有利于大鱼的生存。人们依据最佳捕捞量进行捕捞,就有利于鱼的稳产和高产,从而获得最佳的经济效益。
诺贝尔经济学奖获得者、美国经济计量学家克莱因所编制的“联结”计划,是世界上最大的经济计量模型,将许多国家的经济信息联结在一起,可了解世界贸易情况。运用宏观经济计量模型,能预测经济发展趋势和制定经济政策,充分显示了数学模型方泌的巨大威力。
一.数学模型的定义
现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义。数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。
二.建立数学模型的方法和步骤
第一、 模型准备
首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 第二、 模型假设
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
第三、 模型构成
根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。
第四、模型求解
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。
第五、模型分析
对模型解答进行数学上的分析。横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。
20世纪20年代,意大利数学家伏尔特拉根据捕食者种群与被捕食者种群相互关系,对捕鱼建立的微分方程“捕食模型”证明:超过一定的捕捞量就会使大鱼减少而小鱼增加,如适当减少捕捞量则有利于大鱼的生存。人们依据最佳捕捞量进行捕捞,就有利于鱼的稳产和高产,从而获得最佳的经济效益。
诺贝尔经济学奖获得者、美国经济计量学家克莱因所编制的“联结”计划,是世界上最大的经济计量模型,将许多国家的经济信息联结在一起,可了解世界贸易情况。运用宏观经济计量模型,能预测经济发展趋势和制定经济政策,充分显示了数学模型方泌的巨大威力。
一.数学模型的定义
现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义。数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。
二.建立数学模型的方法和步骤
第一、 模型准备
首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 第二、 模型假设
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
第三、 模型构成
根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。
第四、模型求解
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。
第五、模型分析
对模型解答进行数学上的分析。横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯