如何培养学生数学思想方法
答案:2 悬赏:0 手机版
解决时间 2021-01-30 04:14
- 提问者网友:謫仙
- 2021-01-29 08:28
如何培养学生数学思想方法
最佳答案
- 五星知识达人网友:旧脸谱
- 2021-01-29 10:00
备课时,有不少教师只重视章节中的基本知识和技能,却有意无意地忽略存在于其中的数学思想方法,有些甚至对发现和运用这些知识中至关重要的思想方法视而不见。其实数学思想方法是联系知识的桥梁,是帮助学生产生灵感使其变聪明的法宝。因此,教师备课的重要任务之一就是把存在于教材中的思想方法潜心挖掘出来。对教材的研究应包括对数学思想方法的研究,必须弄清章节中到底隐含着怎样的思想方法,这些思想与方法又集中体现在什么知识点中。例如,数学教材中处处体现了转化思想。学习了负数和相反数,可把减法转化为加法,使加减法完美统一;又如,引入数轴概念时,第一次把抽象的“数”与直观的“形”和谐结合。若教师能在备课时意识到这一点,届时抓住时机,具体形象地向刚入初中的学生及时渗透“数形结合”这一重要数学思想,这对学生以后的学习与发展不无碑益。另外,初中阶段的应用性问题中处处体现着构建模型、转化、数形结合等思想方法,通过对实际问题局部与整体关系的剖析,尝试把其转化为相应的数学问题,建立合理的数学模型,再借助直观图形和知识,尝试不同的解决策略,这个过程中本身就蕴涵着丰富的数学思想和方法。教师只有把存在于教材中的数学思想与方法不断挖掘出来进行系统研究,结合初中不同年级不同学生的生理和心理特征,有计划有步骤地进行渗透与指导,引起学生对数学思想方法的必要重视,这对提高学生的数学思辨能力是相当必要的。
全部回答
- 1楼网友:孤独的牧羊人
- 2021-01-29 10:47
数学思想是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。
小学数学教材中渗透的数学思想方法主要有:数形结合、集合、对应、分类、函数、极限、化归、归纳、符号化、数学建模、统计、假设、代换、比较、可逆等思想方法。教学中,要明确渗透数学思想方法的意义,认识数学思想方法是数学的本质之所在、是数学的精髓,只有方法的掌握、思想的形成,才能使学生受益终生。
下面我就如何向学生渗透这些数学思想方法分别举例说明一下。
一、数形结合思想方法
1.先形后数。一年级的小学生刚开始学习数学,是从具体的物体开始认数,从具体形象到抽象。
2.先数后形。如教学排队问题:一年级小同学排队做操,从前往后数,小明排第5,从后往前,小明排第4,这一对共有几人?小同学很容易地将4与5相加,得出错误的结果。如果让学生用画图的方法解答,用“△”代表排队的小朋友,这道题很容易解决。
二、对应思想
例如,求一个数比另一个数多(少)几的应用题的数量关系。对二年级学生来说较为抽象。我是这样设计的:苹果有8个,梨有6个,苹果比梨多几个?学生通过用○、△等学具代替苹果、梨摆一摆,或用画一画的方法得到了解决。
再如,数轴上的点与实数之间的一一对应等把抽象内容的数量关系视觉化、具体化、形象化,化深奥为浅显。同时,鼓励了学生的创新,使学生乐于参与这样的数学活动。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯