已知:如图,在△ABC中,D是BC边上的一点,连接AD,取AD的中点E,过点A作BC的平行线与CE的延长线交于点F,连接DF.
(1)求证:AF=DC;
(2)若AD=CF,试判断四边形AFDC是什么样的四边形?并证明你的结论.
已知:如图,在△ABC中,D是BC边上的一点,连接AD,取AD的中点E,过点A作BC的平行线与CE的延长线交于点F,连接DF.(1)求证:AF=DC;(2)若AD=C
答案:2 悬赏:10 手机版
解决时间 2021-01-02 15:50
- 提问者网友:咪咪
- 2021-01-02 04:05
最佳答案
- 五星知识达人网友:野慌
- 2021-01-02 05:13
证明:(1)∵AF∥DC,
∴∠AFE=∠DCE,
又∵∠AEF=∠DEC(对顶角相等),AE=DE(E为AD的中点),
∴△AEF≌△DEC(AAS),
∴AF=DC;
(2)矩形.
由(1),有AF=DC且AF∥DC,
∴四边形AFDC是平行四边形,
又∵AD=CF,
∴AFDC是矩形(对角线相等的平行四边形是矩形).解析分析:(1)因为AF∥DC,E为AD的中点,即可根据AAS证明△AEF≌△DEC,故有AF=DC;
(2)由(1)知,AF=DC且AF∥DC,可得四边形AFDC是平行四边形,又因为AD=CF,故可根据对角线相等的平行四边形是矩形进行判定.点评:本题考查矩形的判定和全等三角形的判定与性质.要熟知这些判定定理才会灵活运用,根据性质才能得到需要的相等关系.
∴∠AFE=∠DCE,
又∵∠AEF=∠DEC(对顶角相等),AE=DE(E为AD的中点),
∴△AEF≌△DEC(AAS),
∴AF=DC;
(2)矩形.
由(1),有AF=DC且AF∥DC,
∴四边形AFDC是平行四边形,
又∵AD=CF,
∴AFDC是矩形(对角线相等的平行四边形是矩形).解析分析:(1)因为AF∥DC,E为AD的中点,即可根据AAS证明△AEF≌△DEC,故有AF=DC;
(2)由(1)知,AF=DC且AF∥DC,可得四边形AFDC是平行四边形,又因为AD=CF,故可根据对角线相等的平行四边形是矩形进行判定.点评:本题考查矩形的判定和全等三角形的判定与性质.要熟知这些判定定理才会灵活运用,根据性质才能得到需要的相等关系.
全部回答
- 1楼网友:鱼忧
- 2021-01-02 05:30
这个答案应该是对的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯