永发信息网

七年级下册数学概念一共有多少条??(2013新版)

答案:3  悬赏:40  手机版
解决时间 2021-03-06 08:40
多少条???
最佳答案
年级下册
第五章 相交线与平行线
一、知识结构图
相交线 相交线 垂线
同位角、内错角、同旁内角 平行线 平行线及其判定 平行线的判定 平行线的性质
平移 命题、定理
二、知识定义
邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。 对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。 垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。 平行线:在同一平面内,不相交的两条直线叫做平行线。 同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。 内错角:∠2与∠6像这样的一对角叫做内错角。 同旁内角:∠2与∠5像这样的一对角叫做同旁内角。 命题:判断一件事情的语句叫命题。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。 对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
三、定理与性质
对顶角的性质:对顶角相等。 垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。 平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 平行线的性质:
性质1:两直线平行,同位角相等。

初一全科目课件教案习题汇总语文数学英语历史地理

性质2:两直线平行,内错角相等。 性质3:两直线平行,同旁内角互补。 平行线的判定:
判定1:同位角相等,两直线平行。 判定2:内错角相等,两直线平行。 判定3:同旁内角相等,两直线平行。
第六章 平面直角坐标系
一、知识结构图
有序数对 平面直角坐标系
平面直角坐标系
用坐标表示地理位置 坐标方法的简单应用
用坐标表示平移 二、知识定义
有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)
平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。

第七章 三角形
一、知识结构图
边 与三角形有关的线段 高 中线 角平分线
三角形的内角和 多边形的内角和
三角形的外角和 多边形的外角和 二、知识定义
三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。 多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 多边形的内角:多边形相邻两边组成的角叫做它的内角。
多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。 三、公式与性质
三角形的内角和:三角形的内角和为180° 三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和。 性质2:三角形的一个外角大于任何一个和它不相邻的内角。 多边形内角和公式:n边形的内角和等于(n-2)〃180° 多边形的外角和:多边形的内角和为360°。
多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。 (2)n边形共有2
3)-n(n条对角线。

第八章 二元一次方程组
一、知识结构图
设未知数,列方程

解 代入法 方 加减法 程 (消元) 组 检验

二、知识定义
二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次方程,一般形式是 ax+by=c(a≠0,b≠0)。
二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。 二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。 消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
实际问题
数学问题
(二元或三元一次方程)
实际问题的答案
数学问题的解
(二元或三元一次方程组的解)

第九章 不等式与不等式组
一、知识结构图
设未知数,列不等式(组)

解 不 等 式
检验

二、知识定义
不等式:一般地,用符号“<”“>”“≤ ”“≥”表示大小关系的式子叫做不等式。 不等式的解:使不等式成立的未知数的值,叫做不等式的解。
不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。 三、定理与性质 不等式的性质:
不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。 不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。 不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变
实际问题 (包含不等关系) 数学问题
全部回答
第一章 整式的运算 一. 整式 ※1. 单项式 ①由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。 ②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数. ③一个单项式中,所有字母的指数和叫做这个单项式的次数. ※2.多项式 ①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数. ②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数. ※3.整式单项式和多项式统称为整式. 二. 整式的加减 ¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式. ¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘. 三. 同底数幂的乘法 ※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点: ①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式; ②指数是1时,不要误以为没有指数; ③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加; ④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数); ⑤公式还可以逆用: (m、n均为正整数) 四.幂的乘方与积的乘方 ※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆. ※2. . ※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底, 如将(-a)3化成-a3 ※4.底数有时形式不同,但可以化成相同。 ※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。 ※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。 ※7.幂的乘方与积乘方法则均可逆向运用。 五. 同底数幂的除法 ※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n). ※2. 在应用时需要注意以下几点: ①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0. ②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义. ③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 , ④运算要注意运算顺序. 六. 整式的乘法 ※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。 单项式乘法法则在运用时要注意以下几点: ①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆; ②相同字母相乘,运用同底数的乘法法则; ③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式; ④单项式乘法法则对于三个以上的单项式相乘同样适用; ⑤单项式乘以单项式,结果仍是一个单项式。 ※2.单项式与多项式相乘 单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。 单项式与多项式相乘时要注意以下几点: ①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同; ②运算时要注意积的符号,多项式的每一项都包括它前面的符号; ③在混合运算时,要注意运算顺序。 ※3.多项式与多项式相乘 多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。 多项式与多项式相乘时要注意以下几点: ①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积; ②多项式相乘的结果应注意合并同类项; ③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到 七.平方差公式 ¤1.平方差公式:两数和与这两数差的积,等于它们的平方差, ※即 。 ¤其结构特征是: ①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数; ②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。 八.完全平方公式 ¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍, ¤即 ; ¤口决:首平方,尾平方,2倍乘积在中央; ¤2.结构特征: ①公式左边是二项式的完全平方; ②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。 ¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现 这样的错误。 九.整式的除法 ¤1.单项式除法单项式 单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式; ¤2.多项式除以单项式 多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。 第二章 平行线与相交线 一.台球桌面上的角 ※1.互为余角和互为补角的有关概念与性质 如果两个角的和为90°(或直角),那么这两个角互为余角; 如果两个角的和为180°(或平角),那么这两个角互为补角; 注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。 它们的主要性质:同角或等角的余角相等; 同角或等角的补角相等。 二.探索直线平行的条件 ※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条: ①同位角相等,两直线平行; ②内错角相等,两直线平行; ③同旁内角互补,两直线平行。 三.平行线的特征 ※平行线的特征即平行线的性质定理,共有三条: ①两直线平行,同位角相等; ②两直线平行,内错角相等; ③两直线平行,同旁内角互补。 四.用尺规作线段和角 ※1.关于尺规作图 尺规作图是指只用圆规和没有刻度的直尺来作图。 ※2.关于尺规的功能 直尺的功能是:在两点间连接一条线段;将线段向两方向延长。 圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。 第三章生活中的数据 ※1.科学记数法:对任意一个正数可能写成a×10n的形式,其中1≤a<10,n是整数,这种记数的方法称为科学记数法。 ¤2.利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。 ¤3.统计工作包括: ①设定目标;②收集数据;③整理数据;④表达与描述数据;⑤分析结果。 第四章 概率 ¤1.随机事件发生与不发生的可能性不总是各占一半,都为50%。 ※2.现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科。 ※3.了解必然事件和不可能事件发生的概率。 必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0
  • 2楼网友:想偏头吻你
  • 2021-03-05 11:18
第一章 整式的运算 一. 整式 ※1. 单项式 ①由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。 ②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数. ③一个单项式中,所有字母的指数和叫做这个单项式的次数. ※2.多项式 ①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数. ②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数. ※3.整式单项式和多项式统称为整式. 二. 整式的加减 ¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式. ¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘. 三. 同底数幂的乘法 ※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点: ①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式; ②指数是1时,不要误以为没有指数; ③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加; ④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数); ⑤公式还可以逆用: (m、n均为正整数) 四.幂的乘方与积的乘方 ※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆. ※2. . ※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底, 如将(-a)3化成-a3 ※4.底数有时形式不同,但可以化成相同。 ※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。 ※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。 ※7.幂的乘方与积乘方法则均可逆向运用。 五. 同底数幂的除法 ※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n). ※2. 在应用时需要注意以下几点: ①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0. ②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义. ③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 , ④运算要注意运算顺序. 六. 整式的乘法 ※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。 单项式乘法法则在运用时要注意以下几点: ①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆; ②相同字母相乘,运用同底数的乘法法则; ③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式; ④单项式乘法法则对于三个以上的单项式相乘同样适用; ⑤单项式乘以单项式,结果仍是一个单项式。 ※2.单项式与多项式相乘 单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。 单项式与多项式相乘时要注意以下几点: ①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同; ②运算时要注意积的符号,多项式的每一项都包括它前面的符号; ③在混合运算时,要注意运算顺序。 ※3.多项式与多项式相乘 多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。 多项式与多项式相乘时要注意以下几点: ①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积; ②多项式相乘的结果应注意合并同类项; ③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到 七.平方差公式 ¤1.平方差公式:两数和与这两数差的积,等于它们的平方差, ※即 。 ¤其结构特征是: ①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数; ②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。 八.完全平方公式 ¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍, ¤即 ; ¤口决:首平方,尾平方,2倍乘积在中央; ¤2.结构特征: ①公式左边是二项式的完全平方; ②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。 ¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现 这样的错误。 九.整式的除法 ¤1.单项式除法单项式 单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式; ¤2.多项式除以单项式 多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。 第二章 平行线与相交线 一.台球桌面上的角 ※1.互为余角和互为补角的有关概念与性质 如果两个角的和为90°(或直角),那么这两个角互为余角; 如果两个角的和为180°(或平角),那么这两个角互为补角; 注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。 它们的主要性质:同角或等角的余角相等; 同角或等角的补角相等。 二.探索直线平行的条件 ※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条: ①同位角相等,两直线平行; ②内错角相等,两直线平行; ③同旁内角互补,两直线平行。 三.平行线的特征 ※平行线的特征即平行线的性质定理,共有三条: ①两直线平行,同位角相等; ②两直线平行,内错角相等; ③两直线平行,同旁内角互补。 四.用尺规作线段和角 ※1.关于尺规作图 尺规作图是指只用圆规和没有刻度的直尺来作图。 ※2.关于尺规的功能 直尺的功能是:在两点间连接一条线段;将线段向两方向延长。 圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。 第三章生活中的数据 ※1.科学记数法:对任意一个正数可能写成a×10n的形式,其中1≤a<10,n是整数,这种记数的方法称为科学记数法。 ¤2.利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。 ¤3.统计工作包括: ①设定目标;②收集数据;③整理数据;④表达与描述数据;⑤分析结果。 第四章 概率 ¤1.随机事件发生与不发生的可能性不总是各占一半,都为50%。 ※2.现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科。 ※3.了解必然事件和不可能事件发生的概率。 必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯