Assume that the reciprocal of m-2 is -1/4(1/m+2),then the value of m^2+1/(m^2)
is??????????
Assume that the reciprocal of m-2 is -1/4(1/m+2),then the value of m^2+1/(m^2)
is??????????
假设m-2的倒数是-1/4(1/m+2),那么m^2+1/(m^2) 的值是多少?
1/(m-2)=-1/4(1/m+2)
m-2=-4(1/m+2)
m+4/m=-6
(m+4/m)^2=36
m^2+16/(m^2)+8=36
1/(m-2)=-1/4(1/m+2)
解:-4/m-2=1/m+2
4/(2-m)=1/m+2
4=(1/m+2)(2-m)
4=2/m+4-1-2m
0.5=1/m-m
0.5^2=1/m^2+m^2-2/m×m
m^2+1/(m^2)=2.25
是说m-2=-1/(1/m+2),求m^2+1/(m^2)
由条件可得m=(1+(-)根号5)/2,得,m^2=(3+(-)根号5)/2,带入既有答案
1/(m-2)=-1/4(1/m+2)
解:-4/m-2=1/m+2
4/(2-m)=1/m+2
4=(1/m+2)(2-m)
4=2/m+4-1-2m
0.5=1/m-m
0.5^2=1/m^2+m^2-2/m×m
m^2+1/(m^2)=2.25