已知:如图,PA,PB分别是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=35°,求∠P的度数.
答案:2 悬赏:0 手机版
解决时间 2021-12-31 13:51
- 提问者网友:不爱我么
- 2021-12-30 17:20
已知:如图,PA,PB分别是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=35°,求∠P的度数.
最佳答案
- 五星知识达人网友:舊物识亽
- 2021-12-30 18:05
解:∵PA,PB分别是⊙O的切线,
∴OA⊥AP,OB⊥BP,
∴∠OAP=∠OBP=90°,
∵OA=OB,∠BAC=35°
∴∠ABO=∠BAC=35°,
∴∠AOB=180°-35°-35°=110°,
在四边形APBO中,∠OAP=∠OBP=90°,∠AOB=110°,
则∠P=360°-(∠OAP+∠OBP+∠AOB)=70°.解析分析:由PA与PB都为圆的切线,根据切线的性质得到OA与AP垂直,OB与BP垂直,可得出∠OAP与∠OBP都为直角,又OA=OB,根据等边对等角可得∠ABO与∠BAC相等,由∠BAC的度数求出∠ABO的度数,进而利用三角形的内角和定理求出∠AOB的度数,在四边形APBO中,利用四边形的内角和定理即可求出∠P的度数.点评:此题考查了切线的性质,等腰三角形的性质,三角形及四边形的内角和定理,熟练掌握切线的性质是解本题的关键.
∴OA⊥AP,OB⊥BP,
∴∠OAP=∠OBP=90°,
∵OA=OB,∠BAC=35°
∴∠ABO=∠BAC=35°,
∴∠AOB=180°-35°-35°=110°,
在四边形APBO中,∠OAP=∠OBP=90°,∠AOB=110°,
则∠P=360°-(∠OAP+∠OBP+∠AOB)=70°.解析分析:由PA与PB都为圆的切线,根据切线的性质得到OA与AP垂直,OB与BP垂直,可得出∠OAP与∠OBP都为直角,又OA=OB,根据等边对等角可得∠ABO与∠BAC相等,由∠BAC的度数求出∠ABO的度数,进而利用三角形的内角和定理求出∠AOB的度数,在四边形APBO中,利用四边形的内角和定理即可求出∠P的度数.点评:此题考查了切线的性质,等腰三角形的性质,三角形及四边形的内角和定理,熟练掌握切线的性质是解本题的关键.
全部回答
- 1楼网友:猎心人
- 2021-12-30 18:14
感谢回答,我学习了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯