已知定义在R上的单调函数f(x)满足:存在实数x0,使得对于任意实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立,则(i)f(1
答案:2 悬赏:50 手机版
解决时间 2021-02-22 00:48
- 提问者网友:
- 2021-02-21 18:01
已知定义在R上的单调函数f(x)满足:存在实数x0,使得对于任意实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立,则(i)f(1)+f(0)=________(ii)x0的值为________.
最佳答案
- 五星知识达人网友:持酒劝斜阳
- 2019-12-05 09:45
0 1解析分析:由题意对于任意实数x1,x2等式恒成立,故可采用赋值法求解.解答:(i)令x1=1,x2=0,则f(x0)=f(x0)+f(1)+f(0),故f(1)+f(0)=0;
(ii)令x1=x2=0,则f(0)=f(x0)+2f(0)所以f(x0)=-f(0)由(i)知f(1)=-f(0)=f(x0)又f(x)为单调函数,所以x0=1故
(ii)令x1=x2=0,则f(0)=f(x0)+2f(0)所以f(x0)=-f(0)由(i)知f(1)=-f(0)=f(x0)又f(x)为单调函数,所以x0=1故
全部回答
- 1楼网友:何以畏孤独
- 2019-07-08 10:02
这个答案应该是对的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯