在△ABC中,E,F分别为AB、AC中点,P为EF上任意一点,实数x,y满足向量PA+x向量PB+y向量PC=0,。设△ABC,△PBC,△PCA,△PAB的面积分别为S,S1,S2,S3,记S1/S=λ1,S2/S=λ2,S3/S=λ3,则(λ2)×(λ3)取最大值时,2x+y的值为多少?
急需,谢谢!
在△ABC中,E,F分别为AB、AC中点,P为EF上任意一点,实数x,y满足向量PA+x向量PB+y向量PC=0
答案:2 悬赏:60 手机版
解决时间 2021-03-05 06:19
- 提问者网友:了了无期
- 2021-03-04 23:57
最佳答案
- 五星知识达人网友:归鹤鸣
- 2021-03-05 01:09
解:∵△ABC,△PBC,△PCA,△PAB的面积分别为S,S1,S2,S3,
S1/S=λ1,S2/S=λ2,S3/S=λ3.
∴λ1+λ2+λ3=
(S1+S2+S3)/S=1,
∵P是△ABC的中位线EF上任意一点,且EF∥BC,
∴λ1=1/2,λ2+λ3=1/2
∴λ2λ3≤(λ2+λ3/2)^2=1/16,λ2=λ3=1/4时取等号,此时点P为EF的中点,
∵实数x,y满足向量PA+x向量PB+y向量PC=0,
∴由向量PA=-1/2(向量PB+向量PC),
得到x=1/2,y=1/2,2x+y=3/2
不懂,请追问,祝愉快O(∩_∩)O~.
S1/S=λ1,S2/S=λ2,S3/S=λ3.
∴λ1+λ2+λ3=
(S1+S2+S3)/S=1,
∵P是△ABC的中位线EF上任意一点,且EF∥BC,
∴λ1=1/2,λ2+λ3=1/2
∴λ2λ3≤(λ2+λ3/2)^2=1/16,λ2=λ3=1/4时取等号,此时点P为EF的中点,
∵实数x,y满足向量PA+x向量PB+y向量PC=0,
∴由向量PA=-1/2(向量PB+向量PC),
得到x=1/2,y=1/2,2x+y=3/2
不懂,请追问,祝愉快O(∩_∩)O~.
全部回答
- 1楼网友:北方的南先生
- 2021-03-05 02:39
你好!
3/2 AP=PD=PB/2+PC/2 2x+y=3/2
希望对你有所帮助,望采纳。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯