永发信息网

设函数f(x)=ax2+lnx.(Ⅰ)求f(x)的单调区间;(Ⅱ)设函数g(x)=(2a+1)x,若当x∈(1,+∞)时

答案:2  悬赏:50  手机版
解决时间 2021-03-16 14:05
设函数f(x)=ax2+lnx.(Ⅰ)求f(x)的单调区间;(Ⅱ)设函数g(x)=(2a+1)x,若当x∈(1,+∞)时,f(x)<g(x)恒成立,求a的取值范围.
最佳答案
(Ⅰ)∵f(x)=ax2+lnx,其中x>0,
∴f′(x)=
2ax2+1
x ,
当a≥0时,f′(x)>0,
∴f(x)在(0,+∞)上是增函数;
当a<0时,令f′(x)=0,得x=±



?
1
2a ,
∴f(x)在(0,




1
2a )上是增函数,在(




1
2a ,+∞)上是减函数.
(Ⅱ)令h(x)=f(x)-g(x),
则h(x)=ax2-(2a+1)x+lnx,
根据题意,当x∈(1,+∞)时,h(x)<0恒成立.
∴h′(x)=2ax?(2a+1)+
1
x =
(x?1)(2ax?1)
x
(1)当0<a<
1
2 时,x∈(
1
2a ,+∞)时,h′(x)>0恒成立.
∴h(x)在(
1
2a ,+∞)上是增函数,且h(x)∈(h(
1
2a ),+∞),不符题意;
(2)当a≥
1
2 时,x∈(1,+∞)时,h′(x)>0恒成立.
∴h(x)在(1,+∞)上是增函数,且h(x)∈(h(1),+∞),不符题意;
(3)当a≤0时,x∈(1,+∞)时,恒有h′(x)<0,故h(x)在(1,+∞)上是减函数,
于是“h(x)<0对任意x∈(1,+∞)都成立”的充要条件是h(1)≤0,即a-(2a+1)≤0,
解得a≥-1,故-1≤a≤0.
综上所述,a的取值范围是[-1,0].
全部回答

设h(x)=f(x)-g(x)=lnx+x-ax^2(x>0)

因为不单调

所以求导  h`(x)=1/x+1-2ax(x>0)

此时易知当a<=0时,h`(x)>0恒成立(根据基本不等式),为单调函数,

所以a>0。

望采纳 谢谢 有任何不懂 请加好友 一一解答

我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
在长跑比赛中喝淡盐水好吗
我身高158体重48.7我按照keep上面练马甲线,
爱依瑞斯在哪里啊,我有事要去这个地方
哪个旅行社提供的豪华游轮游有安全保障啊
什么免费短信软件最好用?
梦幻西游满级多少级,升到满级大约需要多久
紫轩小说txt全集免费下载
荆楚菜馆地址有知道的么?有点事想过去
明天K842班列车遵义到肇庆会不会晚点?
iphone6APP老是闪退什么情况?
求丁丁历险记中英字幕,
dnf魔王契约开罐子是一个账号里每个角色都能
孩子喉咙发炎,又发烧吃什么饭菜好
流星雨的名字
8+7=()+()=()+()=()+()
推荐资讯
铅丹的化学方程式
which什么时候做宾语,主语
我想考四川旅游局,不知道他们一般是怎样招生
攀枝花卡西米硅藻泥怎么样、好吗?用过的亲们
nike air vapormax辨别真伪 是尾单工厂直接出
怎样知道别人在哪
笨人煮酒在哪里啊,我有事要去这个地方
如图所示,杠杆在水平位置处于静止状态,若在
在经典计量经济学中,对于所有估计参数的方法
安徽省安庆市枞阳县雨坛乡哪些快递可以到
超能英雄第五季(英雄重生)04 11 12集带中文
特伟达智能窗帘龙泉生活馆地址有知道的么?有
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?