设bn=a(n+1)-2an,求证bn是等比数列
设cn=an/2^n,求证cn是等差数列
求Sn
设bn=a(n+1)-2an,求证bn是等比数列
设cn=an/2^n,求证cn是等差数列
求Sn
a[n+1]=s[n+1]-s[n]=4(a[n]-a[n-1]),a[n+1]-2a[n]=2(a[n]-2a[n-1]),b[n]为以2为公比等比数列
b[n-1]/2^n=(a[n]/2^n-a[n-1]/2^n),又b[n]/2^(n+1)=b[n-1]/2^n为常数,可知c[n]等差数列
3、Sn=a1+……+an=4a(n-1)+2
∵Cn=an/2^n
∴an=Cn*2^n
∴a(n-1)=C(n-1)*2^(n-1) (n≥2)
∵Cn=3n/4-1/4
∴C(n-1)=3n/4-1
∴Sn=3n*2^(n-1)-2^(n+1)+2