如图,在等腰三角形ABC中,顶角 角A=100度,作角B的平分线,交AC于E,求证,AE+BE=BC
答案:3 悬赏:0 手机版
解决时间 2021-11-22 20:44
- 提问者网友:佞臣
- 2021-11-22 04:09
如图,在等腰三角形ABC中,顶角 角A=100度,作角B的平分线,交AC于E,求证,AE+BE=BC
最佳答案
- 五星知识达人网友:深街酒徒
- 2021-11-22 05:11
证明:在BC上取点F,使BF=AE,在BA的延长线取点G,使BG=BE,连结EF,GE
∵∠A=100º,AB=AC
∴∠ABC=∠C=(180º-100º)÷2=40º
∵∠B的角平分线交AC
∴∠ABE=∠FBE=40º÷2=20º
∵BE=BF
∴∠BFE=∠BEF=(180º-20º)÷2=80º
∵∠BFE=∠C+∠CEF,∴∠CEF=80º-40º=40º
∴∠C=∠CEF
∴EF=FC
∵GA=BE,BF=BE,∠GBE=∠FBE
∴⊿GBE≌⊿FBE
∴EF=EG,∠BGE=∠BFE=80º
∵∠GAE=180º-∠EAB=80º
∴∠EGA=∠GAE
∴EG=AE
∴AE=EF=FC
∵BF=BE,CF=AE
∴AE+BE=BC
∵∠A=100º,AB=AC
∴∠ABC=∠C=(180º-100º)÷2=40º
∵∠B的角平分线交AC
∴∠ABE=∠FBE=40º÷2=20º
∵BE=BF
∴∠BFE=∠BEF=(180º-20º)÷2=80º
∵∠BFE=∠C+∠CEF,∴∠CEF=80º-40º=40º
∴∠C=∠CEF
∴EF=FC
∵GA=BE,BF=BE,∠GBE=∠FBE
∴⊿GBE≌⊿FBE
∴EF=EG,∠BGE=∠BFE=80º
∵∠GAE=180º-∠EAB=80º
∴∠EGA=∠GAE
∴EG=AE
∴AE=EF=FC
∵BF=BE,CF=AE
∴AE+BE=BC
全部回答
- 1楼网友:躲不过心动
- 2021-11-22 08:19
这是初中的题吗?追问是基本的图形翻转题,我们老师说的
- 2楼网友:污到你湿
- 2021-11-22 06:48
∵AB=AC,∠A=100°
那么∠ABC=∠ACB=40°
延长BE,截取BF=BC,连接CF
∵BE平分∠ABC,那么∠CBF=∠ABE=20°
∴∠F=∠ACF=80°
在BC上截取BD=AB,连接DE
∵∠ABE=∠DBE=20°,BE=BE
∴△ABE≌△DBE(SAS)
∴AE=DE,∠BDE=∠A=100°
∠AEB=∠DEB=180°-∠A-∠ABE=180°-100°-20°=60°
∴∠DEC=180°-∠AEB-∠DEB=180°-60°-60°=60°
∴∠CEF=∠DEC=∠AEB=60°
∵∠CDE=180°-∠BDE=80°
那么∠CDE=∠F=80°
CE=CE
∴△CDE≌△CFE(AAS)
∴DE=EF=AE
∴BC=BF=BE+EF=BE+AE
追问感谢感谢,可是EF这条线没用上啊我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯