1、cosπ/17cos2π/17cos4π/17cos8π/17等于?
2、设f(x)=LOGa(1+x)+LOGa(3-x)(a大于0,且a不等于1),且f(1)=2 ,(1)求a的值及f(x)的定义域 (2)求f(x)在区间【0,2/3】上的最大值和最小值(祥写过程)
1、cosπ/17cos2π/17cos4π/17cos8π/17等于?
2、设f(x)=LOGa(1+x)+LOGa(3-x)(a大于0,且a不等于1),且f(1)=2 ,(1)求a的值及f(x)的定义域 (2)求f(x)在区间【0,2/3】上的最大值和最小值(祥写过程)
1)sinπ/17=sin(π-π/17)=sin16π/17=2sin8π/17cos8π/17=2×2sin4π/17cos4π/17cos8π/17
=4sin4π/17cos4π/17cos8π/17=4×2sin2π/17cos2π/17cos4π/17cos8π/17=8sin2π/17cos2π/17cos4π/17cos8π/17
=8×2sinπ/17cosπ/17cos2π/17cos4π/17cos8π/17=16sinπ/17cosπ/17cos2π/17cos4π/17cos8π/17
两边同除16sinπ/17得, cosπ/17cos2π/17cos4π/17cos8π/17=1/16
2)定义域:1+x>0,3-x>0, ∴-1<x<3, 即定义域(-1,3)
f(x)=loga (x+1)+loga (3-x), f(2)=loga 2+loga 2=2loga 2=2, loga 2=1, ∴a=2
②f(x)=log2 (x+1)+log2 (3-x)=log2 (x+1)(3-x)=log2 (-x²+2x+3)=log2 [-(x-1)²+4]
y=log2 x是单调增的, ∴f(x)与-(x-1)²+4的单调性相同
-(x-1)²+4在[0,2/3]上单调增, ∴f(x)在[0,2/3]上单调增
∴f(x)最小值为f(0)=log2 3; f(x)最大值为f(2/3)=log2 (35/9)