永发信息网

裴波那契数列是怎样的数列?

答案:4  悬赏:20  手机版
解决时间 2021-04-24 23:30
裴波那契数列是怎样的数列?有什么特别的地方?
最佳答案

“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。1202年,他撰写了《珠算原理》(Liber Abaci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。
  斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……
  这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(又叫“比内公式”,是用无理数表示有理数的一个范例。)
  有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。
【奇妙的属性】
  随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887……
  从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如第五项的平方比前后两项之积多1,第四项的平方比前后两项之积少1)
  如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。
  斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。
  斐波那契数列(f(n),f(0)=0,f(1)=1,f(2)=1,f(3)=2……)的其他性质:
  1.f(0)+f(1)+f(2)+…+f(n)=f(n+2)-1
  2.f(1)+f(3)+f(5)+…+f(2n-1)=f(2n)-1
  3.f(0)+f(2)+f(4)+…+f(2n)=f(2n+1)-1
  4.[f(0)]^2+[f(1)]^2+…+[f(n)]^2=f(n)·f(n+1)
  5.f(0)-f(1)+f(2)-…+(-1)^n·f(n)=(-1)^n·[f(n+1)-f(n)]+1
  6.f(m+n)=f(m-1)·f(n-1)+f(m)·f(n)
  利用这一点,可以用程序编出时间复杂度仅为O(log n)的程序。
  7.[f(n)]^2=(-1)^(n-1)+f(n-1)·f(n+1)
  8.f(2n-1)=[f(n)]^2-[f(n-2)]^2
  9.3f(n)=f(n+2)+f(n-2)
  10.f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m) [ n〉m≥-1,且n≥1]斐波那契数列
  在杨辉三角中隐藏着斐波那契数列
  1
  1 1
  1 2 1
  1 3 3 1
  1 4 6 4 1
  ……
  过第一行的“1”向左下方做45度斜线,之后做直线的平行线,将每条直线所过的数加起来,即得一数列1、1、2、3、5、8、……
  斐波那契数与植物花瓣
  3………………………百合和蝴蝶花
  5………………………蓝花耧斗菜、金凤花、飞燕草
  8………………………翠雀花
  13………………………金盏草
  21………………………紫宛
  34、55、89……………雏菊
  斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。


【相关的数学问题】
  1.排列组合
  有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法?
  这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……
  1,2,3,5,8,13……所以,登上十级,有89种走法。
  2.数列中相邻两项的前项比后项的极限
  当n趋于无穷大时,F(n)/F(n+1)的极限是多少?
  这个可由它的通项公式直接得到,极限是(-1+√5)/2,这个就是黄金分割的数值,也是代表大自然的和谐的一个数字。
  3.求递推数列a(1)=1,a(n+1)=1+1/a(n)的通项公式
  由数学归纳法可以得到:a(n)=F(n+1)/F(n),将斐波那契数列的通项式代入,化简就得结果。


【斐波那契数列别名】
  斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。
  一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子?
  我们不妨拿新出生的一对小兔子分析一下:
  第一个月小兔子没有繁殖能力,所以还是一对;
  两个月后,生下一对小兔民数共有两对;
  三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对;
  ------
  依次类推可以列出下表:
  经过月数:---1---2---3---4---5---6---7---8---9---10---11---12
  兔子对数:---1---1---2---3---5---8--13--21--34--55--89--144
  表中数字1,1,2,3,5,8---构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。
  这个特点的证明:每月的大兔子数为上月的兔子数,每月的小兔子数为上月的大兔子数,即上上月的兔子数,相加。
  这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)的性质外,还可以证明通项公式为:an=1/√[(1+√5/2)n-(1-√5/2) n](n=1,2,3.....)

全部回答
0,1,1,2,3,5,8,13,21……就是前面两数的和等于后面的数组成的一列数。

1,1,2,3,5,8,13,21.......

就是an为前两项之和

斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……   这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(又叫“比内公式”,是用无理数表示有理数的一个范例。)(√5表示根号5)   有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
谁有噶米噶米这首歌往空间放的地址?
西大街/金银巷(路口)地址在什么地方,想过去
读会计需要多少钱
非主流简单伤感签名
梦幻诛仙蓄生丸怎么弄?
i7110市价
有没有有关吸血鬼的动漫啊
小鸟落在身上会不会痒痒?
亲密&爱人精致婚纱摄影在哪里啊,我有事要去
居民户口可不可以转成农民户口呢?
9月4号冷水滩到湘潭的火车怎么提前定票?
怎么样加12有把握。
大家帮忙看看啊这到底是在哪个盘里面就是第一
DNF阿修罗怎么加到五个刻印
两个人在一起,对方要是厌倦了另一方,都会怎
推荐资讯
作文排比段 摘抄 别太长 至少5条
读汉语言文学是不是要背很多?
过完年最早初几有车,公交气车和火车
下游戏的时候多了一个IE浏览器,请问怎么删除
什么人没有烦恼?
手机上QQ流量有多少?
魔兽世界80级国服什么时候能开?
在学堂怎么积分
穿越火线跳箱子技巧
诺基亚C6今年国庆的时候能到多少钱啊
深夜睡不着怎么办
密封件企业的发展前景或者发展优势
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?