证明向量b可由a1,a2...as唯一线性表示,则向量组a1 a2....as线性无关
答案:3 悬赏:70 手机版
解决时间 2021-03-31 18:32
- 提问者网友:浮克旳回音
- 2021-03-31 00:20
证明向量b可由a1,a2...as唯一线性表示,则向量组a1 a2....as线性无关
最佳答案
- 五星知识达人网友:酒者煙囻
- 2021-02-20 06:15
此题可用反证法。
假设a1,a2…as线性相关,那么存在不全为零的数使得k1*a1+k2*a2……+ks*as=0
而且b,a1,a2…as也是线性相关的,故向量b可由向量组a1,a2…as线性表示
又k1*a1+k2*a2……+ks*as=0可将第一个表达式中的某项代换
故存在了两种表示法,与之矛盾。所以a1,a2…as线性无关。
扩展资料:
线性相关性和向量组的相关要求规定:
1、在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立 (linearly independent)。
2、等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。任一向量组和它的极大无关组等价。向量组的任意两个极大无关组等价。
3、对于任一向量组而言,,不是线性无关的就是线性相关的。向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0, 则说A线性无关。包含零向量的任何向量组是线性相关的。含有相同向量的向量组必线性相关。
参考资料来源:百度百科-线性相关
参考资料来源:百度百科-等价向量组
假设a1,a2…as线性相关,那么存在不全为零的数使得k1*a1+k2*a2……+ks*as=0
而且b,a1,a2…as也是线性相关的,故向量b可由向量组a1,a2…as线性表示
又k1*a1+k2*a2……+ks*as=0可将第一个表达式中的某项代换
故存在了两种表示法,与之矛盾。所以a1,a2…as线性无关。
扩展资料:
线性相关性和向量组的相关要求规定:
1、在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立 (linearly independent)。
2、等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。任一向量组和它的极大无关组等价。向量组的任意两个极大无关组等价。
3、对于任一向量组而言,,不是线性无关的就是线性相关的。向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0, 则说A线性无关。包含零向量的任何向量组是线性相关的。含有相同向量的向量组必线性相关。
参考资料来源:百度百科-线性相关
参考资料来源:百度百科-等价向量组
全部回答
- 1楼网友:鱼忧
- 2020-05-18 21:34
|b可由向量a1,a2,,as线性表示
方程组 (a1,a2,,as)x=b 有解
充分性:因为a1,a2,,as线性无关
所以 |a1,a2,,as|不等于0
故方程组唯一解,即唯一表出
必要性:因为表示法唯一
所以方程组唯一解
所以 |a1,a2,,as|不等于0
故a1,a2,,as线性无关
- 2楼网友:深街酒徒
- 2019-08-29 02:36
非零向量b可由向量组a1,a2……as线性表示
<=> 非齐次线性方程组 x1a1+...+xnan =b 有解.
表示法唯一
<=> 方程组 x1a1+...+xnan =b 有唯一解
<=> 系数矩阵(a1,...,an) 的秩等于 n
<=> a1,...,an 线性无关
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯