小球在A点一水平速度V0抛出,斜面倾角为θ斜面足够长(1)自抛出起经多长时间小球离1)自抛出起经多长
答案:2 悬赏:70 手机版
解决时间 2021-02-23 02:34
- 提问者网友:鐵馬踏冰河
- 2021-02-22 09:37
小球在A点一水平速度V0抛出,斜面倾角为θ斜面足够长(1)自抛出起经多长时间小球离1)自抛出起经多长
最佳答案
- 五星知识达人网友:空山清雨
- 2021-02-22 10:20
以点A为坐标原点,水平抛出方向(如水平向右)为x轴正向,竖直向下方向为y轴正向建立平面直角坐标系XAY.设抛出时间为t,则此时小球的坐标为(假设小球未落地到B点):x(t)=v0ty(t)=1/2*gt^2直线AB的方程为:x*tanθ-y=0则根据点到直线距离公式可知,经时间t后小球距离斜面AB的距离为:d(t)=|v0t*tanθ-1/2*gt^2|/√[1+(tanθ)^2]=(gcosθ)/2*|v0^2*(tanθ)^2/g^2-(t-v0tanθ/g)^2]|(1)分析上式可知:当t=0时,d(t)=0;当0≤t≤v0tanθ/g时,随着t的增大,d(t)也增大;当v0tanθ/g≤t≤2v0tanθ/g时,随着t的增大,d(t)减小,直至t=2v0tanθ/g时,d(t)=0,此时恰好落地到B点.故当t=v0tanθ/g时,小球离斜面最远,且最远距离为(gcosθ)/2*v0^2*(tanθ)^2/g^2=tanθsinθv0^2/(2g)(2)当t=2v0tanθ/g时,此时小球恰好落地到B点.则落地点B距A点的距离为:AB=√[(v0*2v0tanθ/g)^2+(1/2*g)^2*(2v0tanθ/g)^4]=2tanθsecθ*v0^2/g不清楚的地方可追问======以下答案可供参考======供参考答案1:一个小球从倾斜角为θ的斜面上A点以水平速度V0抛出,不计空气阻力,自抛出时间 2vtana/g 求出时间后在两个方向求出瞬时速度(用v=v0+at公式)再供参考答案2:这个问题都没问完,怎么答呢?
全部回答
- 1楼网友:青灯有味
- 2021-02-22 11:24
这个问题我还想问问老师呢
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯