取一副扑克牌中各种花色的一至九点共36张牌,每次取出其中的两张牌按从左到右的顺序组成一个两位数,再交换它们左右的位置,得到一个新的两位数,最后求出这两个两位数的和,并
答案:2 悬赏:80 手机版
解决时间 2021-01-03 21:10
- 提问者网友:留有余香
- 2021-01-03 09:24
取一副扑克牌中各种花色的一至九点共36张牌,每次取出其中的两张牌按从左到右的顺序组成一个两位数,再交换它们左右的位置,得到一个新的两位数,最后求出这两个两位数的和,并分析所得和数有什么规律,你能说明理由吗?
最佳答案
- 五星知识达人网友:怀裏藏嬌
- 2021-01-03 10:27
解:设第一次所取的两张牌按从左到右的顺序组成一个两位数的十位数字是a(1≤a≤9,且a为整数),个位数字是b(1≤b≤9,且b为整数),则这个两位数表示为10a+b,
再交换它们左右的位置,得到一个新的两位数为10b+a.
∵(10a+b)+(10b+a)=11a+11b=11(a+b),
又∵a、b都是正整数,∴a+b是正整数,
∴11(a+b)是11的倍数,
即所得的和数是11的倍数.解析分析:如果设第一次所取的两张牌按从左到右的顺序组成一个两位数的十位数字是a,个位数字是b,那么这个两位数表示为10a+b,再交换它们左右的位置,得到一个新的两位数为10b+a,然后求出这两个两位数的和,即可知道所得和数的规律.点评:本题主要考查了一个两位数的表示方法、整式的运算及整除的性质.注意两位数的表示方法:每位上的数字乘以其所在的位数,再求和.
再交换它们左右的位置,得到一个新的两位数为10b+a.
∵(10a+b)+(10b+a)=11a+11b=11(a+b),
又∵a、b都是正整数,∴a+b是正整数,
∴11(a+b)是11的倍数,
即所得的和数是11的倍数.解析分析:如果设第一次所取的两张牌按从左到右的顺序组成一个两位数的十位数字是a,个位数字是b,那么这个两位数表示为10a+b,再交换它们左右的位置,得到一个新的两位数为10b+a,然后求出这两个两位数的和,即可知道所得和数的规律.点评:本题主要考查了一个两位数的表示方法、整式的运算及整除的性质.注意两位数的表示方法:每位上的数字乘以其所在的位数,再求和.
全部回答
- 1楼网友:空山清雨
- 2021-01-03 10:38
哦,回答的不错
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯
正方形一边上任一点到这个正方形两条对角线的 |
阴历怎么看 ? |