如图,在平行四边形ABCD中,对角线AC、BD相交于O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.
答案:2 悬赏:20 手机版
解决时间 2021-01-04 14:10
- 提问者网友:温柔港
- 2021-01-04 06:15
如图,在平行四边形ABCD中,对角线AC、BD相交于O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.
最佳答案
- 五星知识达人网友:不甚了了
- 2021-01-04 07:43
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,OB=OD,
∵∠EDO=∠FBO,∠OED=∠OFB,
∴△OED≌△OFB(AAS),
∴DE=BF,
又∵ED∥BF,
∴四边形BEDF是平行四边形,
∵EF⊥BD,
∴?BEDF是菱形.解析分析:由四边形ABCD是平行四边形,即可得AD∥BC,OB=OD,易证得△OED≌△OFB,可得DE=BF,即可证得四边形BEDF是平行四边形,又由EF⊥BD,即可证得平行四边形BEDF是菱形.点评:此题考查了平行四边形的判定与性质,菱形的判定以及全等三角形的判定与性质.此题难度不大,解题的关键是注意数形结合思想的应用.
∴AD∥BC,OB=OD,
∵∠EDO=∠FBO,∠OED=∠OFB,
∴△OED≌△OFB(AAS),
∴DE=BF,
又∵ED∥BF,
∴四边形BEDF是平行四边形,
∵EF⊥BD,
∴?BEDF是菱形.解析分析:由四边形ABCD是平行四边形,即可得AD∥BC,OB=OD,易证得△OED≌△OFB,可得DE=BF,即可证得四边形BEDF是平行四边形,又由EF⊥BD,即可证得平行四边形BEDF是菱形.点评:此题考查了平行四边形的判定与性质,菱形的判定以及全等三角形的判定与性质.此题难度不大,解题的关键是注意数形结合思想的应用.
全部回答
- 1楼网友:躲不过心动
- 2021-01-04 08:57
对的,就是这个意思
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯