数学上的几何是什么?
答案:5 悬赏:50 手机版
解决时间 2021-05-02 09:53
- 提问者网友:贪了杯
- 2021-05-01 21:01
难
最佳答案
- 五星知识达人网友:独行浪子会拥风
- 2021-05-01 22:09
初中还是高中
全部回答
- 1楼网友:夜余生
- 2021-05-02 02:03
射影几何是研究图形的射影性质,即它们经过射影变换后,依然保持不变的图形性质的几何学分支学科。曾经也叫做投影几何学,在经典几何学中,射影几何处于一个特殊的地位,通过它可以把其他一些几何学联系起来。射影几何学的内容 概括的说,射影几何学是几何学的一个重要分支学科,它是专门研究图形的位置关系的,也是专门用来讨论在把点投影到直线或者平面上的时候,图形的不变性质的科学。 在射影几何学中,把无穷远点看作是“理想点”。欧式直线再加上一个无穷点就是射影几何中的直线,如果一个平面内两条直线平行,那么这两条直线就交于这两条直线共有的无穷远点。通过同一无穷远点的所有直线平行。 在引入无穷远点和无穷远直线后,原来普通点和普通直线的结合关系依然成立,而过去只有两条直线不平行的时候才能求交点的限制就消失了。 由于经过同一个无穷远点的直线都平行,因此中心射影和平行射影两者就可以统一了。平行射影可以看作是经过无穷远点的中心投影了。这样凡是利用中心投影或者平行投影把一个图形映成另一个图形的映射,就都可以叫做射影变换了。 射影变换有两个重要的性质:首先,射影变换使点列变点列,直线变直线,线束变线束,点和直线的结合性是射影变换的不变性;其次,射影变换下,交比不变。交比是射影几何中重要的概念,用它可以说明两个平面点之间的射影对应。 在射影几何里,把点和直线叫做对偶元素,把“过一点作一直线”和“在一直线上取一点”叫做对偶运算。在两个图形中,它们如果都是由点和直线组成,把其中一图形里的各元素改为它的对偶元素,各运算改为它的对偶运算,结果就得到另一个图形。这两个图形叫做对偶图形。在一个命题中叙述的内容只是关于点、直线和平面的位置,可把各元素改为它的对偶元素,各运算改为它的对偶运算的时候,结果就得到另一个命题。这两个命题叫做对偶命题。 这就是射影几何学所特有的对偶原则。在射影平面上,如果一个命题成立,那么它的对偶命题也成立,这叫做平面对偶原则。同样,在射影空间里,如果一个命题成立,那么它的对偶命题也成立,叫做空间对偶原则。 研究在射影变换下二次曲线的不变性质,也是射影几何学的一项重要内容。
- 2楼网友:等灯
- 2021-05-02 01:46
就是图形题
- 3楼网友:归鹤鸣
- 2021-05-02 00:15
是关于图形和量的结合一门学科,比如你家房子,怎么算面积,和他的结构.
- 4楼网友:夜余生
- 2021-05-01 23:11
数学几何分为:解析几何,空间几何,平面几何。
几何的正确解释:研究图形之间的结构及数量关系的一门学科。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯