张恭庆的代表论著
答案:1 悬赏:0 手机版
解决时间 2021-11-11 03:42
- 提问者网友:绫月
- 2021-11-10 11:29
张恭庆的代表论著
最佳答案
- 五星知识达人网友:愁杀梦里人
- 2021-11-10 12:38
Chang, Kung-ching; Solutions of asymptotic linear operator equations via Morse theory Comm. Pure Appl. Math. (1981)693-712
Chang, Kung-ching; Heat Flow and Boundary Value Problems for Harmonic Maps.Analyse non lineaire, Ann.Inst. H. Poincare,(1989), Vol.6, 363-395
Chang, Kung-ching,Infinite Dimensional Morse Theory and Multiple Solution Problems, 1993, Birkhauser
Chang, Kung-ching,Liu, Jia-quan; An evolution of minimal surfaces with Plateau condition. Calc. Var. Partial Differential Equations 19 (2004), no. 2, 117-163
Chang, Kung-ching; The Obstacle Problem and Partial Differential Equations with Discontinuous Nonlinear Term, Comm. Pure & Appl. Math. 3, (1980), 117-146
Chang, Kung-ching; Variational Methods for Non-differentiable Functionals, J. Math. Anal. Appl. 80 (1981), 102-128
Chang, Kung-ching; Heat Flow and Boundary Value Problems for Harmonic Maps.Analyse non lineaire, Ann.Inst. H. Poincare,(1989), Vol.6, 363-395
Chang, Kung-ching,Infinite Dimensional Morse Theory and Multiple Solution Problems, 1993, Birkhauser
Chang, Kung-ching,Liu, Jia-quan; An evolution of minimal surfaces with Plateau condition. Calc. Var. Partial Differential Equations 19 (2004), no. 2, 117-163
Chang, Kung-ching; The Obstacle Problem and Partial Differential Equations with Discontinuous Nonlinear Term, Comm. Pure & Appl. Math. 3, (1980), 117-146
Chang, Kung-ching; Variational Methods for Non-differentiable Functionals, J. Math. Anal. Appl. 80 (1981), 102-128
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯