急需关于二次方根的练习
答案:2 悬赏:20 手机版
解决时间 2021-05-15 03:12
- 提问者网友:聂風
- 2021-05-14 22:59
急需关于二次方根的练习
最佳答案
- 五星知识达人网友:琴狂剑也妄
- 2021-05-15 00:27
1)x^2+5x-6=0
(2)x^2-5x=0
(3)2x^2-x-1=0(5)2x^2+x-2=0
(4)x^2+4x+4=0
答案是(1)x^2+5x-6=0,(5)(x-1)(x+6)=0, x=1,x=-6,
(2)x^2-5x=0, x(x-5)=0, x=0,x=5,
(3)2x^2-x-1=0,(x-1)(2x+1)=0, x=1,x=-1/2,
(4)x^2+4x+4=0,(x+2)^2=0,x=±2,
还要不要?
全部回答
- 1楼网友:煞尾
- 2021-05-15 01:05
平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为(√),其中属于非负实数的平方根称算术平方根。有时我们说的平方根指算术平方根。正整数的平方根通常是无理数。 讲解知识教案 平方根 一.知识结构 二.教学重点与难点分析 本节重点是平方根和算术平方根的概念.平方根是开方运算基础,是引入无理数的准备知识.平方根概念的正确理解有助于符号表示的理解,是正确求平方根运算的前提,而且直接影响到二次根式的学习. 算术根的教学不但是本章教学的重点,也是今后数学学习的重点.在后面学习的根式运算中,归根结底是算术根的运算,非算术根也要转化为算术根. 本节难点是平方根与算术平方根的区别于联系.首先这两个概念容易混淆,而且各自的符号表示意义学生不是很容易区分,教学中要抓住算术平方根式平方根中正的那个,讲清各自符号的意义,区分两种表示的不同.对于平方根运算不仅数有限制,而且结果有两个,这是与以前学过的数的运算很大的区别,要让学生真正理解有一定的困难. 三.教法建议 1.有特殊到一般归纳总结,平方根是平方的逆运算,得出平方根的概念后,让学生观察具体数的平方关系,分析特点归纳总结出平方根的一般规律,有利于学生理解知识的来源,了解数学的归纳思想. 2.开方与平方互为逆,与其他运算相比较对数有些条件限制,是学生从整体认识开放运算.平方根和算术平方根的区别与联系,由于是本节的难点,在讲清平方根的基础上,对比讲解算术平方根,列出两者概念、性质、运算、符号等间的区别,各知识点间的类比学生易于记忆. 3.本节主要内容是平方根和算术平方根,注意数字要简单,关键让学生理解概念.另外在文字叙述时注意语言的严谨规范. 四.平方根的定义 如果一个数的平方等于a,那么这个数叫做a的平方根,也叫二次方根。 学生用计算器求平方根教案 一.知识结构: 二.教学重点难点分析: 教学重点是用计算器求一个正数的平方根的程序.无论实际生活,还是其他学科都会经常用到计算器求一个数的平方根,这也是学生的基本技能之一. 教学难点准确用计算器求一个正数的平方根.由于开平方运算要用到第二功能键,学生容易漏掉此步操作,在教学过程中要着重说明此键的作用功能. 三.教法建议: 在给学生讲解如何利用计算器求一个数的平方根时,讲解速度慢些首先要学生找到键操作后,再讲解下一步.尤其要强调第二功能键的作用功能,在求解时使学生了解第二功能键的必要性.另外课堂上多让要学生亲自动手实践,熟悉各键的功能及求解的步骤. 立方根的概念 如果一个数x的立方等于a,即x的三次方等于a(x^3=a),那么这个数x就叫做a的立方根,也叫做三次方根。读作“三次根号a”其中,a叫做被开方数,3叫做根指数。(a不等于0) 求一个数a的立方根的运算叫做开立方。 所有实数都有且只有一个立方根。 正数的立方根是正数,负数的立方根是负数,0的立方根是0。 立方根的性质: (1)正数有一个正的立方根. (2)负数有一个负的立方根. (3)0的立方根是0. 立方根如何与其他数作比较? 做这两个数的立方 平方根与立方根的不同处和相同处。 平方根中,正数有两个平方根,它们互为相反数,正数只有一个正的立方根;在平方根中负数是没有平方根的,而负数有一个负的立方根;平方根与立方根唯一相同之处是0的平方根,立方根都是它本身. 概括: 任何书都有立方根,并且正数的立方根是正数,负数的立方根为负数,0的立方根为0。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯