矩阵A²+2A+E=0,求证A-E可逆
答案:1 悬赏:70 手机版
解决时间 2021-11-17 17:05
- 提问者网友:蓝琪梦莎
- 2021-11-16 21:50
矩阵A²+2A+E=0,求证A-E可逆
最佳答案
- 五星知识达人网友:未来江山和你
- 2021-11-16 22:48
A^2+2A+E=0,则A^2+2A-3E=-4E,则(A+3E)(A-E)=-4E,即(-1/4)(A+3E)(A-E)=E,所以A-E可逆且逆矩阵是(-1/4)(A+3E)。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯